Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

#### сайт: www.ksight.nt-rt.ru || эл. почта: kth@nt-rt.ru

# Technologies M9391A PXIe Vector Signal Analyzer 1 MHz to 3 GHz or 6 GHz

Data Sheet



### Overview

#### Be ready for tomorrow - today

RF requirements keep growing while timelines keep shrinking. To help ease the technical and business pressures, the right test solution provides continuity in measurements and longevity in capability. The Technologies, Inc. M9391A PXIe vector signal analyzer (PXI VSA) is the next logical step in RF signal analysis.

The M9391A PXI VSA, combined with the M9381A PXIe vector signal generator provides a complete solution for fast, high quality measurements optimized for RF manufacturing test environments.

To help you get proven results even faster, Keysight's PXI VSA can be used with X-Series measurement applications for modular instruments, 89600 VSA software and SystemVue. These software applications enable you to investigate, validate and test your RF communications designs.

From fully modular hardware to software leverage to worldwide support, the PXI VSA is the low-risk way to manage change and be ready for tomorrow-today.

#### Product description

The M9391A PXI VSA is a modular vector signal analyzer for frequencies from 1 MHz to 6 GHz and up to 160 MHz analysis bandwidth. The M9391A is comprised of four individual PXI modules - M9350A downconverter, M9214A digitizer, M9301A synthesizer and M9300A frequency reference. A single M9300A frequency reference can be shared between multiple instruments to minimize footprint.

The flexible, modular design of the M9391A enables you to efficiently scale to multi-channel signal analysis to test multiple-input, multiple-output (MIMO) devices. Capability can also be scaled with options for memory, frequency range and modulation bandwidth which can be easily upgraded in the field.

#### Applications

- Power amplifier and front-end-module design validation and manufacturing
- Radio transceiver design validation and production test
- MIMO and multi-channel device test

#### Reference solutions

Application specific reference solutions, a combination of recommended hardware, software, and measurement expertise, provide the essential components of a test system. The following reference solutions include the M9391A PXI VSA as a hardware component.



Figure 1. M9391A PXIe vector signal analyzer with four modules consisting of the M9214A digitizer, M9301A synthesizer, M9350A downconverter and M9300A frequency reference.

### Definitions for specifications

Temperatures referred to in this document are defined as follows:

- Full temperature range = Individual module temperature of 25 to 75 °C, as reported by the module, and environment temperature of 0 to 55 °C.
- Controlled temperature range = Individual module temperature of 40 to 51 °C, as reported by the module, and environment temperature of 20 to 30 °C.

**Specifications** describe the warranted performance of calibrated instruments. Data represented in this document are specifications under the following conditions unless otherwise noted.

- Calibrated instruments have been stored for a minimum of 2 hours within the full temperature range
- 45 minute warm-up time
- Calibration cycle maintained
- When used with M9300A frequency reference and interconnect cables

**Characteristics** describe product performance that is useful in the application of the product, but that is not covered by the product warranty. Characteristics are often referred to as Typical or Nominal values and are italicized.

- *Typical* describes characteristic performance, which 80% of instruments will meet when operated within the controlled temperature range.
- Nominal describes representative performance that is useful in the application of the product when operated within the controlled temperature range.

### Recommended best practices in use

- Use slot blockers and EMC filler panels in empty module slots to ensure proper operating temperatures. chassis and slot blockers optimize module temperature performance and reliability of test.
- Set chassis fan to high at environmental temperatures above  $45\ ^{\rm o}{\rm C}$
- Maintain temperature stability for best multi-channel phase coherence
  - Set chassis fans to maximum
  - Maintain stable ambient temperature
  - Perform warm-up with session open and representative acquisition waveform running

#### Conversion type operating range

| Conversion types | Frequency range       |
|------------------|-----------------------|
| Auto             | 1 MHz to 3 or 6 GHz   |
| Image protect    | 1 MHz to 3 or 6 GHz   |
| Single high      | 400 MHz to 3 or 6 GHz |
| Single low       | 1.1 GHz to 3 or 6 GHz |

#### Additional information

- Mixer level offset modifies the receiver gain prior to the first mixer of the receiver. A negative setting improves distortion (i.e., TOI) at the cost of noise performance (i.e., DANL). A positive setting improves noise performance at the cost of distortion.
- Performance described in this document applies for module temperature within ± 3 degrees of comprehensive alignment, unless otherwise noted.
- When used with a M9018A PXIe chassis, compre-hensive alignment requires chassis FPGA version 1.05 or greater.
- When configured for multi-channel, phase-coherent operation (shared synthesizer configuration), instrument level warranted specifications only apply to the M9391A which was previously calibrated with the M9301A synthesizer, showing a valid calibration indicator. For all other M9391A channels, specifications revert to typical performance. If using an external LO distribution unit, such as the V2802A LO distribution network, specifications for all M9391A channels revert to typical performance.
- All graphs contain measured data from one unit and is representative of product performance within the controlled temperature range unless otherwise noted.
- The specifications contained in this document are subject to change.

### Block diagram



Figure 3. M9391A PXIe vector signal analyzer block diagram with four modules consisting of the M9301A synthesizer, M9350A downconverter, M9214A digitizer and optional M9300A frequency reference.

#### Frequency

#### Frequency range and resolution

Non-list mode switching speed <sup>6</sup>

| Option F03                                    | 1 MHz to 3 GHz  |                           |                          |                      |                     |
|-----------------------------------------------|-----------------|---------------------------|--------------------------|----------------------|---------------------|
| Option F06                                    | 1 MHz to 6 GHz  |                           |                          |                      |                     |
| Tuning resolution                             | 0.001 Hz        |                           |                          |                      |                     |
| IF frequency                                  |                 |                           | Nomir                    | nal                  |                     |
|                                               | 15 MHz filter   |                           | 326 M                    | Hz                   |                     |
|                                               | 40 MHz filter   |                           | 240 M                    | Hz                   |                     |
|                                               | 160 MHz filter  |                           | 300 M                    | Hz                   |                     |
| Analysis bandwidth <sup>1</sup>               |                 |                           |                          |                      |                     |
| Maximum bandwidth                             | Option BO4 40 N |                           | 40 MH                    | z                    |                     |
|                                               | Option B10      |                           | 100 M                    | Hz                   |                     |
|                                               | Option B16      |                           | 160 M                    | Hz                   |                     |
|                                               |                 |                           |                          |                      |                     |
| Frequency switching speed <sup>2,3</sup>      |                 |                           |                          |                      |                     |
| List mode switching speed <sup>4</sup>        |                 | Sample rate               | Acquisition<br>bandwidth | Standard,<br>nominal | Option UNZ, nominal |
| Baseband frequency offset change <sup>5</sup> |                 | ≤ 100 MHz                 | ≤ 80 MHz                 | 5 ms                 | 27 µs               |
|                                               |                 | > 100 MHz to<br>< 180 MHz | > 80 MHz to<br>< 144 MHz | 5 ms                 | 102 µs              |
|                                               |                 | ≥ 180 MHz                 | ≥ 144 MHz                | 5 ms                 | 15 µs               |
| Arbitrary frequency change                    |                 |                           |                          | 5 ms                 | 320 µs              |
|                                               |                 |                           |                          | Standard.            |                     |

Baseband frequency offset change55 ms310 μsArbitrary frequency change5 ms2.3 ms

nominal

**Option UNZ**, nominal

1. Instantaneous bandwidth (1 dB bandwidth) available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency or modulation domain.

- 2. When used with the M9018A PXIe chassis (2-link configuration: 1 x 8 [factory default]) and M9036A PXIe embedded controller.
- 3. Settled to within 1 kHz or 1 ppm, whichever is greater of final value. Does not include data acquisition or processing time. Amplitude settled to within 0.1 dB. Channel filter set to none. Applies for all conversion types.
- Time from trigger input to frequency and amplitude settled. Minimum IQ sample rate ≥ 6 MHz. Minimum spectrum acquisition ≥ 4.8 MHz. Minimum power acquisition channel filter bandwidth ≥ 4.8 MHz. For lists with first point < 400 MHz or for frequency changes from > 400 MHz to < 400 MHz, add 40 ms.</li>
- 5. Baseband offset can be adjusted ± from carrier frequency within limits determined by RF analysis bandwidth and IF filter bandwidth. Synthesizer frequency and amplitude are not changing. Baseband offset settled to within 1 kHz.
- Mean time from IVI command to carrier frequency settled to within 1 kHz or 1 ppm, whichever is greater. Amplitude settled within 0.1 dB. Simultaneous carrier frequency and amplitude switching. For frequency changes from > 400 MHz to < 400 MHz, add 40 ms.</li>

### Frequency (continued)

#### Frequency reference (M9300A PXIe frequency reference module)

| Reference outputs                                               |                           |                                           |
|-----------------------------------------------------------------|---------------------------|-------------------------------------------|
| 100 MHz Out (Out 1 through Out 5)                               |                           |                                           |
| Amplitude                                                       | ≥ 10 dBm                  | 13 dBm, typical                           |
| Connectors                                                      | 5 SMB snap-on             |                                           |
| Impedance                                                       | 50 Ω, nominal             |                                           |
| 10 MHz Out                                                      |                           |                                           |
| Amplitude                                                       | 9.5 dBm, <i>nominal</i>   |                                           |
| Connectors                                                      | 1 SMB snap-on             |                                           |
| Impedance                                                       | 50 Ω, nominal             |                                           |
| OCXO Out                                                        |                           |                                           |
| Amplitude                                                       | 11.5 dBm, nominal         |                                           |
| Connectors                                                      | 1 SMB snap-on             |                                           |
| Impedance                                                       | 50 Ω, nominal             |                                           |
| Frequency accuracy                                              |                           |                                           |
| Same as accuracy of internal time base or external reference in | nput                      |                                           |
| Internal timebase                                               |                           |                                           |
| Accuracy                                                        | ± [(time since last adjus | tment x aging rate) ± temperature effects |
|                                                                 | ± calibration accuracy]   |                                           |
| Frequency stability                                             |                           |                                           |
| Aging rate                                                      |                           |                                           |
| Daily                                                           | < ±0.5 ppb/day, after 7.  | 2 hours of warm-up                        |
| Yearly                                                          | < ±0.1 ppm/year, after    | 72 hours of warm-up                       |
| Total 10 years                                                  | < ±0.6 ppm/10yrs, afte    | r 72 hours of warm-up                     |
| Achievable initial calibration accuracy                         | ±5 x 10 <sup>-8</sup>     |                                           |
| (at time of shipment)                                           |                           |                                           |
| remperature effects                                             | 10 h                      |                                           |
| 20 to 30 °C                                                     | < ±10 ppb                 |                                           |
| Full temperature range                                          | < ±50 ppb                 |                                           |
| Warm up                                                         |                           |                                           |
| 5 minutes over +20 to +30 °C, with respect to 1 hour            | < ±0.1 ppm                |                                           |
| 15 minutes over +20 to +30 °C, with respect to 1 hour           | < ±0.01 ppm               |                                           |
| External reference input                                        |                           |                                           |
| Frequency                                                       | 1 to 110 MHz, sine wave   | 9                                         |
| Lock range                                                      | ±1 ppm, nominal           |                                           |
| Amplitude                                                       | 0 to 10 dBm, nominal      |                                           |
| Connector                                                       | 1 SMB snap-on             |                                           |
| Impedance                                                       | 50 Ω, nominal             |                                           |

#### Amplitude

#### Input level

| Max safe average tot | al power                   | +3                                                   | 0 dBm (1 W)                                    |                                                      |                                                |                                                      |
|----------------------|----------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------------------------|
| Max DC voltage       |                            | 25                                                   | Vdc                                            |                                                      |                                                |                                                      |
| Max RF input (specif | ied performance)           | 1 t                                                  | 1 to 2 MHz 0 dBm                               |                                                      |                                                |                                                      |
|                      |                            | 2 t                                                  | to 4 MHz                                       | +4                                                   | dBm                                            |                                                      |
|                      |                            | 4 t                                                  | o 100 MHz                                      | +12                                                  | 2 dBm                                          |                                                      |
|                      |                            | 10                                                   | 0 MHz to 6 GHz                                 | +3(                                                  | ) dBm                                          |                                                      |
| Expected input leve  | l setting                  |                                                      |                                                |                                                      |                                                |                                                      |
| Range                |                            |                                                      |                                                |                                                      |                                                |                                                      |
| Pre-amp ON           |                            | -1                                                   | 70 to 0 dBm                                    |                                                      |                                                |                                                      |
| Pre-amp OFF          |                            | -1                                                   | 70 to +30 dBm                                  |                                                      |                                                |                                                      |
| Pre-amp AUTO 7       |                            | -1                                                   | 70 to +30 dBm                                  |                                                      |                                                |                                                      |
| Resolution           |                            | 0.1                                                  | l dB                                           |                                                      |                                                |                                                      |
| Absolute amplitude   | accuracy & total           | absolute amplitude                                   | accuracy                                       |                                                      |                                                |                                                      |
| · ·                  |                            | Full temperature                                     | e range                                        | Controlled temp                                      | erature range                                  | @ 46 °C module<br>temp <sup>10</sup> , typical       |
| Conversion type      | Frequency                  | Total absolute<br>amplitude<br>accuracy <sup>8</sup> | Absolute<br>amplitude<br>accuracy <sup>9</sup> | Total absolute<br>amplitude<br>accuracy <sup>8</sup> | Absolute<br>amplitude<br>accuracy <sup>9</sup> | Total absolute<br>amplitude<br>accuracy <sup>8</sup> |
| 40 MHz IF filter     |                            | Module tempera                                       | ture within ± 3 °C o                           | of alignment, pre-amp                                | ON & OFF                                       |                                                      |
| Image protect        | ≤ 3 GHz                    | ±1.78 dB                                             | ±1.72 dB                                       | ±1.27 dB                                             | ±1.21 dB                                       | ±0.46 dB                                             |
|                      | > 3 GHz                    | ±1.54 dB                                             | ±1.48 dB                                       | ±1.19 dB                                             | ±1.13 dB                                       | ±0.46 dB                                             |
| Single               | All                        | ±1.47 dB                                             | ±1.41 dB                                       | ±1.22 dB                                             | ±1.17 dB                                       | ±0.45 dB                                             |
| 160 MHz IF filter    |                            | Module tempera                                       | ture within ±3 °C of                           | alignment, Pre-amp O                                 | )FF <sup>11</sup>                              |                                                      |
| Image protect        | ≤ 3 GHz                    | ±1.46 dB                                             | ±1.34 dB                                       | ±0.96 dB                                             | ±0.85 dB                                       | ±0.33 dB                                             |
|                      | > 3 GHz                    | ±1.54 dB                                             | ±1.48 dB                                       | ±1.16 dB                                             | ±1.09 dB                                       | ±0.45 dB                                             |
| Single               | All                        | ±1.18 dB                                             | ±1.08 dB                                       | ±0.94 dB                                             | ±0.86 dB                                       | ±0.36 dB                                             |
| 160 MHz IF filter    |                            | Module tempera                                       | ture within ±3 °C of                           | alignment, Pre-amp O                                 | N <sup>12</sup>                                |                                                      |
| Image protect        |                            | +1 60 dD                                             | +1 60 dB                                       | +1 18 dB                                             | ±1.10 dB                                       | ±0.39 dB                                             |
|                      | ≤ 3 GHZ                    | ±1.00 UD                                             | ±1.00 uD                                       | =1110 0.0                                            |                                                |                                                      |
|                      | > 3 GHz                    | ±1.55 dB                                             | ±1.49 dB                                       | ±1.21 dB                                             | ±1.15 dB                                       | ±0.45 dB                                             |
| Single               | ≤ 3 GHZ<br>> 3 GHZ ≤ 3 GHZ | ±1.55 dB<br>±1.09 dB                                 | ±1.49 dB<br>±0.96 dB                           | ±1.21 dB<br>±0.85 dB                                 | ±1.15 dB<br>±0.72 dB                           | ±0.45 dB<br>±0.29 dB                                 |

7. At expected input level ≤ -37 dBm, pre-amp is switched on.

8. Total absolute amplitude accuracy is the total of all amplitude measurement errors. This specification includes the sum of the following individual specifications: linearity, expected input level switching uncertainty, IF bandwidth filter switching uncertainty, absolute amplitude accuracy. The wide range of settings used (i.e., expected input level, etc.) are tested independently. The individual error contributions are calculated as follows: a 99.8 % proportion and 95% confidence are computed for each parameter on a statistically significant number of instruments. The root-sum-square (RSS) of these four independent Gaussian parameters is then taken. To that RSS value, two environmental effects and measurement uncertainty are added. One environmental effect is that of temperature (full and controlled temperature range, as defined above) and the other is the temperature variation of ±3 degrees around a field alignment. Applies over the following subset of settings and conditions: expected input level - 50 dBm to +30 dBm; input signals within 60 dB below expected input level; 40 MHz and 160 MHz IF filters; input signal at center frequency over full frequency range.

9. The absolute amplitude accuracy is the amplitude measurement error when only changing frequency. The expected input level, conversion type and IF bandwidth settings remain the same and the error introduced by those parameters are not included. Pre-amp auto/OFF expected input level +10 dBm and -12 dBm. Pre-amp ON expected input level -30 dBm.

10. Typical specifications shown at M9350A downconverter reported module temperature of 46 °C and a corresponding environment temperature of 25 °C.

11. When using pre-amp auto mode, applies for signal level within expected input level >-37 dBm.

12. When using pre-amp auto mode, applies for signal level within expected input level ≤-37 dBm.

### Amplitude (continued)

#### Amplitude repeatability and linearity

|                                  | Input signal relative to     |                       |
|----------------------------------|------------------------------|-----------------------|
|                                  | expected input level setting | Specification         |
| Repeatability                    |                              | <0.05 dB, nominal     |
| Linearity <sup>13</sup>          | >-35 dB                      | ±0.12 dB              |
|                                  |                              | ±0.03 dB, nominal     |
|                                  | ≤–35 dB                      | ±0.21 dB              |
|                                  |                              | ±0.04 dB, nominal     |
|                                  |                              |                       |
| IF flatness <sup>14, 15</sup>    |                              |                       |
| Analysis bandwidth               | IF filter                    | Nominal               |
| 40 MHz                           | 40 MHz                       | ± 0.08 dB             |
| 100 MHz                          | 160 MHz                      | ± 0.09 dB             |
| 160 MHz                          | 160 MHz                      | ± 0.10 dB             |
|                                  |                              |                       |
| IF phase linearity <sup>15</sup> |                              |                       |
| Analysis bandwidth               | Conversion type              | Peak to peak, nominal |
| 40 MHz                           | All                          | 1.0 °                 |
| 100 MHz                          | Single                       | 0.8 °                 |
|                                  | Image protect                | 1.7 °                 |
| 160 MHz                          | Single                       | 1.4 °                 |
|                                  | Image protect                | 1.8 °                 |

Input level 20 dB above the noise floor and dither on, no change in hardware settings, below expected input level.
 Amplitude deviation from the mean error of the entire bandwidth, all conversion types.
 Expected input level 0 dBm. Center frequency ≥ 250 MHz.

### Amplitude (continued)

| IF bandwidth filter switching uncertainty <sup>16</sup> | Specification     | Typical  | Nominal      |  |
|---------------------------------------------------------|-------------------|----------|--------------|--|
|                                                         | ±0.4 dB           | ±0.15 dB | ±0.09 dB     |  |
|                                                         | 0 17 11           |          |              |  |
| Expected input level switching uncertainty              | Specification     | Typical  | Nominal      |  |
| Pre-amp Auto/OFF                                        |                   |          |              |  |
| Max input to +5 dBm                                     | ±0.45 dB          | ±0.14 dB | ±0.10 dB     |  |
| Crossing +5 dBm                                         | ±0.63 dB          | ±0.24 dB | ±0.17 dB     |  |
| Pre-amp OFF                                             |                   |          |              |  |
| +5 to -50 dBm                                           | ±0.41 dB          | ±0.16 dB | ±0.11 dB     |  |
| Pre-amp ON                                              |                   |          |              |  |
| +0 to -50 dBm                                           | ±0.64 dB          | ±0.27 dB | ±0.21 dB     |  |
| Pre-amp AUTO                                            |                   |          |              |  |
| Crossing –37 dBm                                        | ±0.95 dB          | ±0.19 dB | ±0.12 dB     |  |
|                                                         |                   |          |              |  |
| Amplitude switching speed                               |                   |          |              |  |
| Arbitrary amplitude change                              | Standard, nominal | Option   | UNZ, nominal |  |
| List mode switching speed <sup>17</sup>                 | ≤ 5 ms            | ≤ 136 µ  | IS           |  |
| Non-list mode switching speed <sup>18</sup>             | ≤ 5 ms            | ≤ 1.5 m  | IS           |  |
|                                                         |                   |          |              |  |
| Input voltage standing wave ratio (VSWR)                | Nominal           |          |              |  |
| < 10 MHz                                                | 1.7:1             |          |              |  |
| 10 MHz to 2.5 GHz                                       | 1.4:1             |          |              |  |
| > 2.5 GHz                                               | 1.7:1             |          |              |  |

16. Amplitude error relative to the reference IF bandwidth filter of 40 MHz.

 Settled to within 0.1 dB of final value. Does not include data acquisition or processing time.
 When used with the M9018A PXIe chassis (2-link configuration: 1 x 8 [factory default]) and the M9036A PXIe embedded controller. 18. Mean time from IVI command to amplitude settled.

### Dynamic range

#### Displayed average noise level (DANL) <sup>19</sup>

| Conversion type                     | Frequency             | Specification |           | Nominal                  |
|-------------------------------------|-----------------------|---------------|-----------|--------------------------|
| Pre-amp OFF                         |                       |               |           |                          |
| Image protect                       | < 100 MHz             |               |           | –145 dBm/Hz              |
|                                     | 100 to < 700 MHz      | –137 dBm/Hz   |           | –147 dBm/Hz              |
|                                     | 700 MHz to < 5.75 GHz | –140 dBm/Hz   |           | –148 dBm/Hz              |
|                                     | 5.75 to 6 GHz         | –129 dBm/Hz   |           | –146 dBm/Hz              |
| Single                              | <1.2 GHz              | –148 dBm/Hz   |           | –154 dBm/Hz              |
|                                     | 1.2 to 3.1 GHz        | –143 dBm/Hz   |           | –152 dBm/Hz              |
|                                     | > 3.1 to < 5.4 GHz    | –138 dBm/Hz   |           | –149 dBm/Hz              |
|                                     | 5.4 to 6 GHz          | –133 dBm/Hz   |           | –148 dBm/Hz              |
| Pre-amp ON                          |                       |               |           |                          |
| Image protect                       | < 100 MHz             |               |           | –162 dBm/Hz              |
|                                     | 100 MHz to < 2.7 GHz  | –156 dBm/Hz   |           | –161 dBm/Hz              |
|                                     | 2.7 to 4.4 GHz        | –155 dBm/Hz   |           | –160 dBm/Hz              |
|                                     | > 4.4 to < 5.6 GHz    | –152 dBm/Hz   |           | –157 dBm/Hz              |
|                                     | 5.6 to 6 GHz          | –141 dBm/Hz   |           | –154 dBm/Hz              |
| Single                              | <1.1 GHz              | –157 dBm/Hz   |           | –161 dBm/Hz              |
|                                     | 1.1 to < 3.6 GHz      | –154 dBm/Hz   |           | –158 dBm/Hz              |
|                                     | 3.6 to 5 GHz          | –151 dBm/Hz   |           | –156 dBm/Hz              |
|                                     | > 5 to 6 GHz          | –146 dBm/Hz   |           | –153 dBm/Hz              |
|                                     |                       |               |           |                          |
| I hird order intermodulation distor |                       | 10123         |           | Distortion <sup>24</sup> |
| Conversion type: auto               | Frequency             | Specification | Iypical   | Specification            |
| Pre-amp OFF 21                      | ≤ 400 MHz             | +15 dBm       | +20.5 dBm | -52 dBc                  |
|                                     | > 400 MHz to 3 GHz    | +18 gru       | +23 dBm   | -52 dBc                  |
|                                     | > 3 GHz               | +20 dBm       | +23.5 dBm | -52 dBc                  |
| Pre-amp ON 22                       | ≤ 100 MHz             | –9.9 dBm      | –2.5 dBm  | -56 dBc                  |
|                                     | > 100 to 850 MHz      | –7.9 dBm      | +2 dBm    | -58 dBc                  |
|                                     | > 850 MHz to 2 GHz    | -4.3 dBm      | +5 dBm    | -47 dBc                  |
|                                     | > 2 to 3 GHz          | –0.9 dBm      | +7 dBm    | -41 dBc                  |
|                                     | > 3 to 6 GHz          | +1 dBm        | +5 dBm    | -32 dBc                  |

19. Expected input level of -50 dBm. Mixer level offset +10 dB.

- 20. Two tone, 100 kHz tone spacing.
- 21. Expected input level -5 dBm. Mixer level offset +10 dB.
- 22. Expected input level –25 dBm. Mixer level offset +15 dB.
- 23. TOI = third order intercept. The TOI is given by the input tone level (in dBm) minus (distortion/2) where distortion is the relative level of the distortion tones in dBc.

24. Expected input level -10 dBm with preamp off and -30 dBm with preamp on.

### Dynamic range (continued)

#### Second harmonic distortion (SHI)

| Conversion type: image protect | Frequency  | SHI, nominal <sup>26</sup> | Distortion, nominal <sup>27</sup> |
|--------------------------------|------------|----------------------------|-----------------------------------|
| Pre-amp OFF <sup>25</sup>      | ≤ 1.35 GHz | +35 dBm                    | – 45 dBc                          |
|                                | > 1.35 GHz | +95 dBm                    | –105 dBc                          |





Figure 4. Dynamic range at 2 GHz, pre-amp OFF,

single-high conversion type.

Figure 5. Dynamic range at 5.8 GHz, pre-amp OFF, single-high conversion type.

25. Expected input level -10 dBm. Mixer level offset +10 dB.

26. SHI = second harmonic intercept. The SHI is given by the input power in dBm minus the second harmonic distortion level relative to the input signal in dBc. 27. For 0 dBm input signal.

### Dynamic range (continued)





Figure 6. Dynamic range at 2 GHz, pre-amp OFF, image protect conversion type.



### Spectral purity

#### Phase noise 28

| Conversion type | Center frequency | Offset | Nominal     |
|-----------------|------------------|--------|-------------|
| Single low      | 1.1 GHz          | 10 kHz | –120 dBc/Hz |
| Single high     | 1 GHz            | 10 kHz | –119 dBc/Hz |







Figure 9. Phase noise at 5.8 GHz.

### Spectral purity (continued)

#### Residuals, images & spurious responses

| Non-input related spurs 29                       | Conversion type      | Frequency              | Nominal    |
|--------------------------------------------------|----------------------|------------------------|------------|
| Expected input level                             |                      |                        |            |
| Pre-amp ON                                       |                      |                        |            |
| ≤ 0 dBm (measured at –50 dBm)                    | Single               | All                    | < -120 dBm |
|                                                  | Image protect        | All <sup>30</sup>      | < -120 dBm |
| Pre-amp OFF                                      |                      |                        |            |
| < +5 dBm (measured at –50 dBm)                   | Single               | ≤ 3 GHz                | < -120 dBm |
|                                                  |                      | > 3 GHz                | < –116 dBm |
|                                                  | Image protect        | All <sup>31</sup>      | < –105 dBm |
| $\ge$ +5 dBm (measured at +6 dBm)                | Single               | All                    | < -98 dBm  |
|                                                  | Image protect        | All <sup>32</sup>      | < -90 dBm  |
| LO related spurs <sup>33</sup>                   | Offsets from carrier | Frequency              | Nominal    |
|                                                  | 200 to 10 kHz        | All                    | – 82 dBc   |
|                                                  | 10 kHz to 10 MHz     | All                    | – 55 dBc   |
| First order RF spurious responses <sup>34</sup>  | Offsets from carrier | Frequency              | Nominal    |
|                                                  | ≥ 10 MHz             | $\ge 200$ MHz to 6 GHz | –60 dBc    |
| Higher order RF spurious responses <sup>34</sup> | Offsets from carrier | Frequency              | Nominal    |
|                                                  | ≥ 10 MHz             | ≥ 200 MHz to 6 GHz     | –60 dBc    |
| Image responses 35                               | Conversion type      | Frequency              | Nominal    |
|                                                  | Image protect        | All                    | < –68 dBc  |
| IF rejection <sup>36</sup>                       | IF bandwidth filter  | Frequency              | Nominal    |
|                                                  | 15 MHz               | ≤ 400 MHz              | < –57 dBc  |
|                                                  |                      | > 400 MHz              | < –105 dBc |
|                                                  | 40 MHz               | ≤ 450 MHz              | < –57 dBc  |
|                                                  |                      | > 450 MHz              | < –98 dBc  |
|                                                  | 160 MHz              | All                    | < –85 dBc  |
| LO emission <sup>37</sup>                        | Conversion type      | Frequency              | Nominal    |
|                                                  | Single               | ≤ 3 GHz                | –72 dBm    |
|                                                  |                      | > 3 GHz                | -62 dBm    |
|                                                  | Image protect        | All                    | –88 dBm    |

29. Mixer level offset at 10 dB, input terminated, with  $50\Omega$  load.

30. From 4.72 to 4.88 GHz, specification at <-108 dBm, nominal.

31. From 4.72 to 4.88 GHz, specification at <-96 dBm, nominal.

32. From 4.72 to 4.88 GHz, specification at <-80 dBm, nominal.

33. Expected input level 0 dBm. Mixer offset level -10 dB.

34. Conversion type: image protect, pre-amp OFF, expected input level -20 dBm and mixer level offset 0 dB.

35. Excitation frequency: [F=2\*Final IF] MHz, expected input level -20 dBm, mixer level offset -30 dB.

36. Suppression of signal at IF frequencies when tuned at least 2 x IF BW away.

All input paths, image protect, expected input level -30 dBm. Input signal at -30 dBm and mixer level offset 0 dB.

37. Expected input level -50 dBm. Mixer level offset +10 dB.

#### Data acquisition

| Non-list mode                              | List mode                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 128 MSample (512 MB)                       | 128 MSample (512 MB)                                                                                                                                                                                                                                                                                                                                                                       |
| 512 MSample (2 GB)                         | 512 MSample (2 GB)                                                                                                                                                                                                                                                                                                                                                                         |
| 1 GSample (4 GB) <sup>38</sup>             | 512 MSample (2 GB) to ~ 1 GSample (3.999 GB) <sup>39</sup>                                                                                                                                                                                                                                                                                                                                 |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 sample 40                                |                                                                                                                                                                                                                                                                                                                                                                                            |
| Full capture memory <sup>38</sup>          |                                                                                                                                                                                                                                                                                                                                                                                            |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                            |
| 50 MS/s complex, 100 MS/s real             |                                                                                                                                                                                                                                                                                                                                                                                            |
| 125 MS/s complex, 250 MS/s real            |                                                                                                                                                                                                                                                                                                                                                                                            |
| 200 MS/s complex, 400 MS/s real            |                                                                                                                                                                                                                                                                                                                                                                                            |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                            |
| 3201                                       |                                                                                                                                                                                                                                                                                                                                                                                            |
| External, magnitude                        |                                                                                                                                                                                                                                                                                                                                                                                            |
| Per acquisition, interval timer trigger    |                                                                                                                                                                                                                                                                                                                                                                                            |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                            |
| –500 ms to +500 ms, <i>nominal</i>         |                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 sample, <i>nominal</i>                   |                                                                                                                                                                                                                                                                                                                                                                                            |
| 10 to 30 MHz for pulse                     |                                                                                                                                                                                                                                                                                                                                                                                            |
| TTL                                        |                                                                                                                                                                                                                                                                                                                                                                                            |
| 20% to 80%                                 |                                                                                                                                                                                                                                                                                                                                                                                            |
| Sine, pulse/square, ramp (symmetry 0% to 1 | 00%)                                                                                                                                                                                                                                                                                                                                                                                       |
|                                            | Non-list mode128 MSample (512 MB)512 MSample (2 GB)1 GSample (4 GB) 381 sample 40Full capture memory 3850 MS/s complex, 100 MS/s real125 MS/s complex, 250 MS/s real200 MS/s complex, 400 MS/s real3201External, magnitudePer acquisition, interval timer trigger-500 ms to +500 ms, nominal1 sample, nominal10 to 30 MHz for pulseTTL20% to 80%Sine, pulse/square, ramp (symmetry 0% to 1 |

#### Channel-to-channel synchronization 42

|                                     | Timing           | Phase          |
|-------------------------------------|------------------|----------------|
| Skew                                | ≤400 ps, nominal | -              |
| Jitter <sup>43</sup>                | ≤50 ps, nominal  | ≤0.3°, nominal |
| Repeatability 44                    | ≤80 ps, nominal  | ≤1.0°, nominal |
| Adjustment resolution <sup>45</sup> | 50 ps            | 0.05°          |
| Drift over 12 hours                 | 20 ps, nominal   | 0.5°, nominal  |

- 38. The default mode for allocation of capture memory is AgM9391MemoryModeNormal, where the digitizer's memory is shared by both the default single acquisition (capture ID = 0) and all the other acquisitions with non-zero capture IDs. In particular, the memory for the default single acquisition is allocated from the area unused by the list acquisitions. If the available memory is not sufficient for the single acquisition, the user must release memory allocated for the non-zero capture ID acquisitions manually, thus increasing free space. Total memory usage is limited according to the memory option. Note that the maximum size of acquisition is 2 GB in this mode. To perform the default single acquisitions with memory size larger than 2 GB, AgM9391MemoryModeLargeAcquisition must be selected. The non-zero capture ID acquisitions cannot be per formed in this mode. All data acquired with AGM9391MemoryMode Normal will be invalidated.
- 39. The maximum size for a single list point capture is limited to 512 MSamples (2 GB). However, with option M10, total capture of up to 3.999 GB is available across all list mode captures.
- 40.64-bit mode, 2 samples for 32-bit mode.
- 41. Negative trigger delay limited to capture size.
- 42.Multi-channel capability only supported with up to 8-channels when configured with a M9018A PXIe chassis with FPGA version 1.05 or greater. Characteristics measured at 400, 900, 2400, 5800 MHz and apply in Auto Conversion mode at frequencies 2400 MHz with IF filter = 160 MHz. V2802A LO distribution network used for phase synchronization for more than 4 channels.
- 43. Jitter indicates measurement-to-measurement variation and applies over short time interval at room temperature without resetting or reinitializing a driver session.
- 44. Repeatability indicates stability of alignment between channels across power cycles and IVI sessions, with identical cabling and hardware settings (frequency, span, sample rate, etc.)
- 45. Channel time and phase offsets can be adjusted using OffsetDelay and OffsetPhase properties respectively.

#### Measurement speed<sup>46</sup>

| IQ data capture 47                            | Nominal |                                        |
|-----------------------------------------------|---------|----------------------------------------|
| Large block (50 MSamples)                     | 1.5 s   | Transferred in 100 kSa or 1 MSa blocks |
| Small block (100 captures, 100 ksamples each) | 292 ms  | Transferred in 10 kSa blocks           |
| Adjust level, freq (10 ksamples)              | 1.7 ms  | Transferred in 10 kSa blocks           |

#### Power measurements 48

| Channel power settings & filter bandwidth | Acquisition Time | Averages | Nominal |
|-------------------------------------------|------------------|----------|---------|
| 3.84 MHz                                  | 400 µs           | None     | 1.8 ms  |
|                                           |                  | 10       | 7.6 ms  |
|                                           | 100 µs           | None     | 1.3 ms  |
|                                           |                  | 10       | 4.1 ms  |
|                                           | 50 µs            | None     | 1.3 ms  |
|                                           |                  | 10       | 3.4 ms  |
| 30 kHz                                    | 100 µs           | None     | 3.9 ms  |
|                                           |                  | 10       | 30.4 ms |

46. EVM, ACPR and servo loop test times for the RF power amplifier test, reference solution are included in the solution brochure 5991-4104EN.

47. Capture block, transfer to host memory, 160 MHz BW, excludes frequency transitions below 400 MHz, with M9037A embedded controller (2-link configuration: 1 x 8 [factory default]).

 Transfer to host memory, 160 MHz IF bandwidth filter, excludes frequency transitions below 400 MHz, with M9037A embedded controller (2-link configuration: 1 x 8 [factory default]).

### Noise Figure Measurement Application

| Description     | Specifications   |                   | Supplemental Information                                         |
|-----------------|------------------|-------------------|------------------------------------------------------------------|
| Noise figure    |                  |                   | Uncertainty calculator <sup>49</sup>                             |
| < 10 MHz        |                  |                   | See footnote <sup>50</sup>                                       |
| 10 MHz to 6 GHz |                  |                   | Internal and external preamplification recommended <sup>51</sup> |
|                 | Noise source ENR | Measurement range | Instrument uncertainty <sup>52</sup>                             |
|                 | 4 to 6.5 dB      | 0 to 20 dB        | ± 0.054 dB                                                       |
|                 | 12 to 17 dB      | 0 to 30 dB        | ± 0.102 dB                                                       |
|                 | 20 to 22 dB      | 0 to 35 dB        | ± 0.119 dB                                                       |

49. The figures given in the table are for the uncertainty added by the X-Series Signal Analyzer instrument only. To compute the total uncertainty for your noise figure measurement, you need to take into account other factors including: DUT NF, Gain and Match, Instrument NF, Gain Uncertainty and Match; Noise source ENR uncertainty and Match. The computations can be performed with the uncertainty calculator included with the Noise Figure Measurement Personality. Go to Mode Setup then select Uncertainty Calculator.

50. Uncertainty performance of the instrument is nominally the same in this frequency range as in the higher frequency range. However, performance is not warranted in this range. There is a paucity of available noise sources in this range, and the analyzer has poorer noise figure, leading to higher uncertainties as computed by the uncertainty calculator.

51. The NF uncertainty calculator can be used to compute the uncertainty. For most DUTs of normal gain, the uncertainty will be quite high without preamplification.

52. "Instrument Uncertainty" is defined for noise figure analysis as uncertainty due to relative amplitude uncertainties encountered in the analyzer when making the measurements required for a noise figure computation. The relative amplitude uncertainty depends on, but is not identical to, the relative display scale fidelity, also known as incremental log fidelity. The uncertainty of the analyzer is multiplied within the computation by an amount that depends on the Y factor to give the total uncertainty of the noise figure or gain measurement. See App Note 57-2, literature number 5952-3706E for details on the use of this specification. Jitter (amplitude variations) will also affect the accuracy of results. The standard deviation of the measured result decreases by a factor of the square root of the Resolution Bandwidth used and by the square root of the number of averages. This application uses the 4 MHz Resolution Bandwidth as default because this is the widest bandwidth with uncompromised accuracy.

| Description                          | Specifications | Supplemental Information                                   |
|--------------------------------------|----------------|------------------------------------------------------------|
| Gain                                 |                |                                                            |
| Instrument uncertainty <sup>53</sup> |                | DUT gain range = $-20$ to $+40$ dB. See note <sup>54</sup> |
| < 10 MHz                             |                |                                                            |
| 10 MHz to 6 GHz                      | ± 0.21 dB      |                                                            |

53. "Instrument Uncertainty" is defined for gain measurements as uncertainty due to relative amplitude uncertainties encountered in the analyzer when making the measurements required for the gain computation. See App Note 57-2, literature number 5952-3706E for details on the use of this specification. Jitter (amplitude variations) will also affect the accuracy of results. The standard deviation of the measured result decreases by a factor of the square root of the Resolution Bandwidth used and by the square root of the number of averages. This application uses the 4 MHz Resolution Bandwidth as default since this is the widest bandwidth with uncompromised accuracy. Under difficult conditions (low Y factors), the instrument uncertainty for gain in high band can dominate the NF uncertainty as well as causing errors in the measurement of gain. These effects can be predicted with the uncertainty calculator.

54. Uncertainty performance of the instrument is nominally the same in this frequency range as in the higher frequency range. However, performance is not warranted in this range. There is a paucity of available noise sources in this range, and the analyzer has poorer noise figure, leading to higher uncertainties as computed by the uncertainty calculator.

| Description<br>Noise figure uncertainty calculator <sup>55</sup> | Specifications                                     | Supplemental Information                                                                                        |
|------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Instrument noise figure uncertainty                              | See the noise figure table earlier in this chapter |                                                                                                                 |
| Instrument gain uncertainty                                      | See the gain table earlier in this chapter         |                                                                                                                 |
| Instrument noise figure                                          |                                                    | See graphs of "nominal instrument noise<br>figure"; noise figure is DANL + 176.24 dB<br>(nominal) <sup>56</sup> |
| Instrument input match                                           |                                                    | See graphs: nominal VSWR                                                                                        |

55. The Noise Figure Uncertainty Calculator requires the parameters shown in order to calculate the total uncertainty of a Noise Figure measurement.

56. Nominally, the noise figure of the spectrum analyzer is given by NF = D – (K – L + N + B) where D is the DANL (displayed average noise level) specification, K is kTB (-173.98 dBm in a 1 Hz bandwidth at 290 K) L is 2.51 dB (the effect of log averaging used in DANL verifications) N is 0.24 dB (the ratio of the noise bandwidth of the RBW filter with which DANL is specified to an ideal noise bandwidth) B is ten times the base-10 logarithm of the RBW (in hertz) in which the DANL is specified. B is 0 dB for the 1 Hz RBW. The actual NF will vary from the nominal due to frequency response errors.





### Format specific measurement data

GSM 57, 58

|                    | Parameters                       | Nominal |
|--------------------|----------------------------------|---------|
| Global phase error | 0.9, 1.8, 1.9, 2.0, 2.1, 2.2 GHz | 0.17 °  |
| ORFS dynamic range | 200 kHz offset                   | –36 dBc |
|                    | 250 kHz offset                   | –41 dBc |
|                    | 400 kHz offset                   | –69 dBc |
|                    | 600 kHz offset                   | –73 dBc |
|                    | 800 kHz offset                   | –77 dBc |
|                    | 1200 kHz offset                  | –80 dBc |
|                    | 1800 kHz offset                  | –78 dBc |
|                    |                                  |         |

EDGE 57, 58

|                    | Parameters                       | Nominal   |
|--------------------|----------------------------------|-----------|
| Residual EVM       | 0.9, 1.8, 1.9, 2.0, 2.1, 2.2 GHz | 0.23% rms |
| ORFS dynamic range | 200 kHz offset                   | -37 dBc   |
|                    | 250 kHz offset                   | -42 dBc   |
|                    | 400 kHz offset                   | –69 dBc   |
|                    | 600 kHz offset                   | –73 dBc   |
|                    | 800 kHz offset                   | –77 dBc   |
|                    | 1200 kHz offset                  | –80 dBc   |
|                    | 1800 kHz offset                  | –77 dBc   |

57. Synthesizer PLL mode set to PLL mode best wide offset.58. Expected input level 0 dBm, input signal (total power) 0 dBm, mixer level offset +10 dB, conversion type: Auto, PeakToAverage set per signal peak to average.

### Format specific measurement (continued)

| W-CDMA 59,60                  | Parameters          |         |              | Typical      |                   | Nominal                |          |              |
|-------------------------------|---------------------|---------|--------------|--------------|-------------------|------------------------|----------|--------------|
| Residual EVM                  | 2 GHz, 1 DPCH, 1    | carrier |              |              |                   | 0.5%                   |          |              |
| ACLR dynamic range            | 2 GHz, 1 DPCH, 1    | carrier | Adjacent     | –68.1 dBc    |                   | –69.8 dBc              |          |              |
|                               | (power mode)        |         | Alternate    | –70.7 dBc    |                   | –71.7 dBc              |          |              |
| 802.11g <sup>59, 60, 64</sup> | Parameters          |         |              |              |                   | Nominal                |          |              |
| EVM                           | 2.4 GHz, 20 MHz     | BW      |              |              |                   | −52.8 dB               |          |              |
| 802.11a <sup>59, 60, 64</sup> | Parameters          |         |              |              |                   | Nominal                |          |              |
| EVM                           | 5.8 GHz, 20 MHz     | BW      |              |              |                   | –48.1 dB               |          |              |
| 802.11n <sup>59, 60, 64</sup> | Parameters          |         |              |              | Ν                 | Iominal                |          |              |
|                               |                     |         | 1-channel    | 2-channe     | l <sup>62</sup> 3 | -channel 62            | 4-chanr  | 1el 62       |
| EVM                           | 2.4 GHz, 40 MHz     | BW      | –52.0 dB     | –51.6 dB     | -                 | 50.6 dB                | –50.9 dE | 3            |
|                               | 5.8 GHz, 40 MHz     | BW      | –48.6 dB     | -46.6 dB     | -                 | 45.3 dB                | –46.0 dł | 3            |
| 802.11ac 59,60                | Parameters          |         |              |              | Nominal           |                        |          |              |
|                               |                     | 1-char  | inel         | 2-channel 62 | 3-channel         | <sup>62</sup> 4-channe | 62       | 8-channel 62 |
|                               |                     |         |              |              | Preamble o        | nly                    |          |              |
| EVM 63                        | 5.8 GHz, 80 MHz BW  | -46.5 ( | dB           | -44.3 dB     | –43.0 dB          | −43.6 dB               |          | -41.2 dB     |
|                               | 5.8 GHz, 160 MHz BW | -44.7 ( | dΒ           | –43.4 dB     | –41.7 dB          | -43.3 dB               |          | -40.1 dB     |
|                               |                     |         |              |              | Preamble, p       | oilots & data          |          |              |
| EVM 63                        | 5.8 GHz, 80 MHz BW  | -49.4 ( | dΒ           | –48.6 dB     | –47.3 dB          | -46.4 dB               |          | -42.3 dB     |
|                               | 5.8 GHz, 160 MHz BW | -47.5 c | IB           | –47.5 dB     | –44.7 dB          | –45.1 dB               |          | -40.1 dB     |
| SEM                           | 5.8 GHz, 80 MHz BW  | see Fig | ure 10       |              |                   |                        |          |              |
| 802.11a/g 62,60               | Parameters          |         |              |              |                   |                        |          |              |
| SEM                           | 2 4 GHz             |         | see Figure ' | 11           |                   |                        |          |              |

 SLM
 2.4 GHZ
 See Figure 11

 5.5 GHz
 see Figure 12

 802.11e <sup>62, 60, 65</sup>
 Parameters

 OFDMA WiMAX™ EVM
 2.5, 3.5, & 5.8 GHz
 -48.3 dB, nominal

59. Synthesizer PLL mode set to PLL mode best wide offset.

60. Expected input level 0 dBm, input signal (total power) 0 dBm, conversion type: Auto. PeakToAverage set per signal peak to average.

61. Synthesizer PLL mode set to PLL mode normal.

62. Multi-channel performance data applies when each channel is configured with its own independent synthesizer. Sharing a single synthesizer will degrade EVM performance approximately 1 dB.

63. Mixer level offset = +5 dB

64. Mixer level offset = +10 dB

65. Mixer level offset = +15 dB

Format specific measurement (continued)



Figure 10. WLAN 802.11ac SEM at 5.8 GHz, 80 MHz bandwidth.





Figure 11. WLAN 802.11a/g SEM at 2.4 GHz, 20 MHz bandwidth.

Figure 12. WLAN 802.11a/g SEM at 5.5 GHz, 20 MHz bandwidth.

| LTE FDD - single channel 66, 67 | Parameters                                                                                                                            |        |                  | 1-channel, nominal     |          |                                  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|------------------------|----------|----------------------------------|
| 10 MHz BW EVM,                  | 0.7, 0.9 GHz                                                                                                                          |        |                  | –52.2 dB (0.25%)       |          |                                  |
| E-TM 3.1 61,62                  | 1.8, 1.9, 2.0, 2.1, 2.2 GHz                                                                                                           |        |                  | -51.0 dB (0.28%)       |          |                                  |
| 10 MHz BW ACLR,                 | MHz BW ACLR,         0.7, 0.9, 1.8, 1.9, 2.0, 2.1, 2.2 GHz         Adjacent           M 1.1 63         (power mode)         Alternate |        | Adjacent         | –64.2 dBc<br>–65.5 dBc |          |                                  |
| E-TM 1.1 63                     |                                                                                                                                       |        | Alternate        |                        |          |                                  |
| LTE FDD - MIMO 66, 67, 68       | Parameters                                                                                                                            | 2-cha  | nnel, nominal 72 | 4-channel, no          | minal 72 | 8-channel, nominal <sup>73</sup> |
|                                 | 0.9 GHz                                                                                                                               | -49.8  | dB (0.32%)       | –50.1 dB (0.31         | %)       | -52.6 dB (0.23%)                 |
|                                 | 2.0 GHz                                                                                                                               | -49.2  | dB (0.35%)       | –49.3 dB (0.34         | :%)      | -48.8 dB (0.36%)                 |
| LTE TDD - MIMO 66, 67, 68       | Parameters                                                                                                                            | 2-chai | nnel, nominal 72 | 4-channel, nor         | ninal 72 | 8-channel, nominal 73            |
|                                 | 0.9 GHz                                                                                                                               | -50.7  | dB (0.29%)       | –50.3 dB (0.31         | %)       | -56.3 dB (0.15%)                 |
|                                 | 2.0 GHz                                                                                                                               | -49.0  | dB (0.36%)       | –49.0 dB (0.36         | %)       | -54.8 dB (0.18%)                 |

#### Format specific measurement (continued)

66. Expected input level 0 dBm, input signal (total power) 0 dBm, conversion type: Auto. PeakToAverage set per signal peak to average.

67. Synthesizer PLL mode set to PLL mode normal.

68. Multi-channel performance data applies when each channel is configured with its own independent synthesizer. Sharing a single synthesizer will degrade EVM performance approximately 1 dB.

69. PDCCH power boost = 1.065 dB

70. Mixer level offset = +10 dB

71. Mixer level offset = +15 dB

- 72. 10 MHz BW EVM, R9 downlink, 64 QAM, open loop spatial multiplexing
- 73. 10 MHz BW, DL, TM9 multi-layer, TM4 closed loop spatial multiplexing

#### Environmental and physical specifications

| Tomporatura                   | Operating                                                                                     |           | Individual module temp<br>and environment temp                                                                                                                                                                                                                      | o 25 to 75 °C as reported by the module<br>of 0 to 55 °C |  |
|-------------------------------|-----------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|
| Temperature                   | Non-operating                                                                                 | (storage) | Environment temp of -                                                                                                                                                                                                                                               | 40 to +70 °C                                             |  |
| Humidity <sup>74</sup>        | Non-operating                                                                                 | (storage) | Type tested at 95%, +4<br>(non-condensing)                                                                                                                                                                                                                          | 40 °C                                                    |  |
| Shock/vibration <sup>74</sup> | Operating random vibration<br>Survival random vibration<br>Functional shock<br>Bench handling |           | Type tested at 5 to 500 Hz, 0.21 g rms<br>Type tested at 5 to 500 Hz, 2.09 g rms<br>Type tested at half-sine, 30 g, 11 ms<br>Type tested per MIL-PRF-28800F                                                                                                         |                                                          |  |
| Altitude                      |                                                                                               |           | Up to 15,000 feet (4,57                                                                                                                                                                                                                                             | 72 meters) 75                                            |  |
| Connectors                    | RF In                                                                                         |           | SMA female                                                                                                                                                                                                                                                          |                                                          |  |
| EMC                           |                                                                                               |           | Complies with European EMC Directive 2004/108/EC<br>– IEC/EN 61326-2-1<br>– CISPR Pub 11 Group 1, class A<br>– AS/NZS CISPR 11<br>– ICES/NMB-001<br>This ISM device complies with Canadian ICES-001.<br>Cet appareil ISM est conforme a la norme NMB-001 du Canada. |                                                          |  |
| Warm-up time                  |                                                                                               |           | 45 minutes                                                                                                                                                                                                                                                          |                                                          |  |
| Size                          | M9300A<br>M9301A<br>M9350A<br>M9214A                                                          |           | 1 PXIe slot<br>1 PXIe slot<br>1 PXIe slot<br>1 PXIe slot                                                                                                                                                                                                            |                                                          |  |
| Dimensions                    | Module                                                                                        | Length    | Width                                                                                                                                                                                                                                                               | Height                                                   |  |
|                               | M9300A                                                                                        | 210 mm    | 22 mm                                                                                                                                                                                                                                                               | 130 mm                                                   |  |
|                               | M9301A                                                                                        | 210 mm    | 22 mm                                                                                                                                                                                                                                                               | 130 mm                                                   |  |
|                               | M9350A                                                                                        | 210 mm    | 22 mm                                                                                                                                                                                                                                                               | 130 mm                                                   |  |
|                               | M9214A                                                                                        | 210 mm    | 22 mm                                                                                                                                                                                                                                                               | 130 mm                                                   |  |
| Weight                        | M9300A<br>M9301A<br>M9350A<br>M9214A                                                          |           | 0.55 kg (1.21 lbs)<br>0.54 kg (1.19 lbs)<br>0.56 kg (1.23 lbs)<br>0.36 kg (0.79 lbs)                                                                                                                                                                                |                                                          |  |
| Power drawn from chassis      | M9300A<br>M9301A<br>M9350A<br>M9214A                                                          |           | ≤ 18 W<br>≤ 25 W<br>≤ 30 W<br>≤ 35 W                                                                                                                                                                                                                                |                                                          |  |

Samples of this product have been type tested in accordance with the Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation and end-use--those stresses include but are not limited to temperature, humidity, shock, vibration, altitude and power-line conditions. Test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3.
 At 15,000 feet, the maximum environmental temperature is de-rated to 52 °C.

#### System requirements

| Торіс                              | Windows 7 requirements                                 |  |
|------------------------------------|--------------------------------------------------------|--|
| Operating systems                  | Windows 7 (32-bit and 64-bit)                          |  |
| Processor speed                    | 1 GHz 32-bit (x86), 1 GHz 64-bit (x64)                 |  |
|                                    | (no support for Itanium 64)                            |  |
| Available memory                   | 4 GB minimum                                           |  |
|                                    | 8 GB or greater recommended                            |  |
| Available                          | 1.5 GB available hard disk space, includes:            |  |
| disk space <sup>76</sup>           | 1 GB available for Microsoft .NET Framework 3.5 SP1 77 |  |
|                                    | 100 MB for IO Libraries Suite                          |  |
| Video                              | Support for DirectX 9 graphics with 128 MB             |  |
|                                    | graphics memory recommended                            |  |
|                                    | (Super VGA graphics is supported)                      |  |
| Browser                            | Microsoft Internet Explorer 7 or greater               |  |
| M9391A vector signal analyzer inst | rument drivers                                         |  |
| IO libraries                       | Version 16.3.17914 or greater                          |  |

76. Because of the installation procedure, less disk space may be required for operation than is required for installation.
77. NET Framework Runtime Components are installed by default with Windows 7. Therefore, you may not need this amount of available disk space.

# Configuration and Ordering Information

### Software information

| Supported operating systems                                                                            | Microsoft Windows 7<br>(32/64-bit)                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard compliant<br>drivers                                                                          | IVI-COM, IVI-C, LabVIEW, MATLAB                                                                                                                                                                                                                                                                                                                                                           |
| Supported application<br>development environ-<br>ments (ADE)                                           | VisualStudio (VB.NET, C#, C/C++), VEE,<br>LabVIEW, LabWindows/CVI, MATLAB                                                                                                                                                                                                                                                                                                                 |
| IO libraries (version<br>16.3 or newer)                                                                | Includes: VISA libraries,<br>Connection Expert, IO monitor                                                                                                                                                                                                                                                                                                                                |
| Command Expert                                                                                         | Instrument control for SCPI or IVI-COM drivers                                                                                                                                                                                                                                                                                                                                            |
| 89600 VSA Software<br>(version 17.21 or newer;<br>Option SSA added in<br>version 18.5)                 | 89600B-200 Basic VSA software<br>89601B-300 Hardware connectivity<br>89601B-SSA Spectrum analysis<br>89601B-AYA GP analysis<br>89601B-B7T cdma2000®/1xEV-DO<br>89601B-B7U W-CDMA/HSPA+<br>89601B-B7U W-CDMA/HSPA+<br>89601B-B7R WLAN 802.11a/b/g/j/p<br>89601B-B7X TD-SCDMA<br>89601B-BHD LTE FDD<br>89601B-BHG LTE FDD - Advanced<br>89601B-BHE LTE TDD<br>89601B-BHH LTE TDD - Advanced |
| X-Series Measurement<br>Applications for<br>Modular Instruments<br>transportable<br>perpetual license. | M9063A Analog demodulation<br>M9064A Vector signal analysis<br>M9071A GSM/EDGE/Evo<br>M9072A cdma2000®/cdma0ne<br>M9073A W-CDMA/HSPA+<br>M9076A 1xEV-D0<br>M9077A WLAN 802.11a/b/g/n/ac<br>M9079A TD-SCDMA/HSDPA<br>M9080B LTE/LTE-A FDD<br>M9081A <i>Bluetooth</i> ®<br>M9082B LTE/LTE-A TDD                                                                                             |

### Accessories

| Model  | Description                                       |
|--------|---------------------------------------------------|
| Y1212A | Slot blocker kit: 5 modules                       |
| Y1213A | PXI EMC filler panel kit: 5 slots                 |
| Y1299A | PXI solutions startup kits                        |
| Y1243A | Cable kit for M9301A LO distribution              |
| M9021A | PCIe® cable interface                             |
| M9045B | PCIe express card adaptor for laptop connectivity |
| Y1200B | PCIe cable for laptop connectivity                |
| M9048A | PCIe desktop adaptor for desktop connectivity     |
| Y1202A | PCIe cable for desktop connectivity               |

#### Related products

| Model  | Description                  |
|--------|------------------------------|
| M9381A | PXIe vector signal generator |
| M9380A | PXIe CW source               |
| M9300A | PXIe frequency reference     |
| M9018A | PXIe 18-slot chassis         |
| M9037A | PXIe embedded controller     |

#### Advantage services: Calibration and warranty

Advantage Services is committed to your success throughout your equipment's lifetime

| R-51B-001-5Z | Return to warranty - 5 years      |
|--------------|-----------------------------------|
| R-51B-001-3X | Express warranty - 3 years        |
| R-51B-001-5X | Express warranty - 5 years        |
| N7800A       | Calibration & adjustment software |

# Technologies M9393A PXIe Performance Vector Signal Analyzer





### Overview

#### Acquire the performance edge in PXI

Whether your system supports a leading-edge design or a legacy platform, change is certain. Modular solutions are highly adaptable, and Technologies, Inc. is taking flexibility farther with the M9393A PXIe performance vector signal analyzer. The M9393A is the realization of our micro-wave measurement expertise in modular form. It integrates core signal-analysis capabilities with hardware speed and accuracy, enabling you to tailor your solution to fit specific needs – today and tomorrow. Deploy the M9393A and acquire the performance edge in PXI.

#### Validate the true performance of your device

The M9393A meets stringent system requirements with microwave performance previously unseen in modular. Quickly test to tighter tolerances with best-in-class switching speed and amplitude accuracy.

# Get consistent, accurate results faster with optimized software elements

The M9393A leverages Keysight's trusted measurement science, providing proven, familiar software applications that minimize development time and reduce risk.

**X-Series measurement applications:** Verify signal compliance with standards-based measurements for LTE, WLAN and more, while simplifying software migration through deep programmatic compatibility with benchtop signal analyzers.

**89600 VSA software:** Characterize signals across the entire frequency range with new high-speed stepped spectrum capability along with existing software support for > 75 signal formats and multi-channel analysis.

# Ensure success at microwave frequencies today and tomorrow

Easily adapt to changing test needs with license key upgradable options and hardware designed for extensibility. Rely on unmatched supportability based on Keysight's N7800A calibration and adjustment software for TME self-maintainers and Keysight's standard 3-year warranty.

#### Applications

- Aerospace and defense manufacturing and depot test
- Wireless device design validation and manufacturing



Figure 1. Standard M9393A PXIe performance vector signal analyzer with four modules consisting of M9300A frequency reference, M9308A synthesizer, M9365A downconverter and M9214A digitizer.

#### Product description

The M9393A PXI performance VSA is a vector signal analyzer with frequency coverage up to 50 GHz. The standard configuration provides frequency coverage from 9 kHz to 8.4, 14, 18 or 27 GHz and includes four individual PXI modules – M9214A digitizer, M9308A synthesizer, M9365A down-converter and M9300A frequency reference. The extended frequency configuration can be used to provide frequency coverage from 3.6 to 50 GHz with the recommended addition of the M9169E switchable attenuator module. For more information on product options and configurations, see the configuration guide, literature number **5991-4580EN**.

#### Reference solutions

Application specific reference solutions, a combination of recommended hardware, software, and measurement expertise, provide the essential components of a test system. The following reference solutions include the M9393A PXI VSA as a hardware component.

- RF PA/FEM characterization and test, Reference Solution for the industry's fastest envelope tracking test, rapid waveform download, tight synchronization, automated calibration and digital pre-distortion.
- LTE/LTE-A multi-channel test, Reference Solution for faster insight into carrier aggregation and spatial multiplexing designs.
- Satellite Signal Monitoring, Reference Solution for monitoring large blocks of spectrum and efficient validation of signal integrity.

#### Definitions for specifications

**Temperatures** referred to in this document are defined as follows:

- Full temperature range = Individual module temperature of 15 to 75 °C, as reported by the module, and environment temperature of 0 to 55 °C.
- Controlled temperature range = Individual module temperature of 36 to 50 °C, as reported by the module, and environment temperature of 20 to 30 °C.

**Specifications** describe the warranted performance of calibrated instruments. Data represented in this document are specifications under the following conditions unless otherwise noted.

- Calibrated instruments have been stored for a minimum of 2 hours within the full temperature range
- 30 minute warm-up time
- Calibration cycle maintained
- When used with M9300A frequency reference and interconnect cables

**Characteristics** describe product performance that is useful in the application of the product, but that is not covered by the product warranty. Characteristics are often referred to as Typical or Nominal values and are italicized.

- **Typical** describes characteristic performance, which 80% of instruments will meet when operated within the controlled temperature range.
- **Nominal** describes representative performance that is useful in the application of the product when operated within the controlled temperature range.
- **95th percentile** values indicate the breadth of the population (approx.  $2 \sigma$  of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to 30 °C. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.

#### Recommended best practices in use

- Use slot blockers and EMC filler panels in empty module slots to ensure proper operating temperatures. chassis and slot blockers optimize module temperature performance and reliability of test.
- Set chassis fan to high at environmental temperatures above 45 °C.

#### Conversion type operating range

| Conversion types  | Frequency range          |
|-------------------|--------------------------|
| Auto              | All frequencies          |
| Double conversion | 9 kHz to 3.6 GHz         |
| Single high       | 3.6 GHz to max frequency |
| Single low        | 3.6 GHz to max frequency |

#### Additional information

- Mixer level offset modifies the receiver gain prior to the first mixer of the receiver. A negative setting improves distortion (i.e., TOI) at the cost of noise performance (i.e., DANL). A positive setting improves noise performance at the cost of distortion.
- The PeakToAverage property is used with expected RF Power property to optimize level settings in the Downconverter. Set this to the ratio, in dB, of the peak power to the average power. The Downconverter uses this value to optimize mixer level, IF gain, and ADC clip level.
- IF Level Offset (dB) provides additional adjustment of IF power level. Positive values reduce noise. Negative values reduce distortion.
- Digitizer Level Offset (dB) provides additional adjustment of Downconverter IF power to the digitizer. Positive values increase power to the digitizer. Negative values decrease power to the digitizer.
- All graphs contain measured data from one unit and are representative of product performance within the controlled temperature range unless otherwise noted.
- Default conditions apply, unless otherwise noted.
- The specifications contained in this document are subject to change.

### Standard Configuration - Options F08, F14, F18, F27

#### Block diagram



Figure 2. Standard M9393A PXIe vector signal analyzer (9 kHz to 27 GHz) block diagram with four modules consisting of the M9308A synthesizer, M9365A downconverter, M9214A digitizer and the optional M9300A frequency reference.

To maximize the M9300A's 100 MHz outputs, especially for multi-channel configurations, an SMB T-type adapter (not shown) can be used to split the signal between the M9214A 100 MHz In and the M9308A 100 MHz In. For more information, please refer to the M9393A startup guide, literature number M9393-90002.

### Standard Configuration - Options F08, F14, F18, F27

#### Frequency

| Frequency range and resolution                             |                                                                                                                                                                |                                                                                                                                        |                                                                               |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Option F08                                                 | 9 kHz to 8.4 GHz                                                                                                                                               |                                                                                                                                        |                                                                               |
| Option F14                                                 | 9 kHz to 14 GHz                                                                                                                                                |                                                                                                                                        |                                                                               |
| Option F18                                                 | 9 kHz to 18 GHz                                                                                                                                                |                                                                                                                                        |                                                                               |
| Option F27                                                 | 9 kHz to 27 GHz                                                                                                                                                |                                                                                                                                        |                                                                               |
| Tuning resolution                                          | 0.01 Hz                                                                                                                                                        |                                                                                                                                        |                                                                               |
| Analysis bandwidth <sup>1</sup>                            |                                                                                                                                                                |                                                                                                                                        |                                                                               |
| Maximum bandwidth                                          | Option B04 (standard)                                                                                                                                          | 40 MHz                                                                                                                                 |                                                                               |
|                                                            | Option B10                                                                                                                                                     | 100 MHz                                                                                                                                |                                                                               |
|                                                            | Option B16                                                                                                                                                     | 160 MHz                                                                                                                                |                                                                               |
|                                                            | Option WB1 <sup>5</sup>                                                                                                                                        | 1 GHz IF output, nominal                                                                                                               |                                                                               |
|                                                            |                                                                                                                                                                |                                                                                                                                        |                                                                               |
| IF frequency <sup>2</sup>                                  |                                                                                                                                                                | Final IF                                                                                                                               | First IF (< 3.6 GHz)                                                          |
| IF frequency <sup>2</sup>                                  | 40 MHz IF path                                                                                                                                                 | <b>Final IF</b><br>240 MHz                                                                                                             | First IF (< 3.6 GHz)<br>5040 MHz                                              |
| IF frequency <sup>2</sup>                                  | 40 MHz IF path<br>100/160 MHz IF path                                                                                                                          | Final IF<br>240 MHz<br>300 MHz                                                                                                         | <b>First IF (&lt; 3.6 GHz)</b><br>5040 MHz<br>5100 MHz                        |
| IF frequency <sup>2</sup>                                  | 40 MHz IF path<br>100/160 MHz IF path<br>40 MHz alternate IF path <sup>3</sup>                                                                                 | Final IF           240 MHz           300 MHz           326 MHz                                                                         | First IF (< 3.6 GHz)           5040 MHz           5100 MHz           5126 MHz |
| IF frequency <sup>2</sup>                                  | 40 MHz IF path<br>100/160 MHz IF path<br>40 MHz alternate IF path <sup>3</sup><br>Bypass path (Option WB1) <sup>6</sup>                                        | Final IF240 MHz300 MHz326 MHzAdjustable                                                                                                | First IF (< 3.6 GHz)         5040 MHz         5100 MHz         5126 MHz       |
| IF frequency <sup>2</sup><br>Band                          | 40 MHz IF path<br>100/160 MHz IF path<br>40 MHz alternate IF path <sup>3</sup><br>Bypass path (Option WB1) <sup>6</sup><br>Harmonic mixing mode                | Final IF<br>240 MHz<br>300 MHz<br>326 MHz<br>Adjustable<br>LO multiple (N) <sup>4</sup>                                                | First IF (< 3.6 GHz)                                                          |
| IF frequency <sup>2</sup> Band Band 0                      | 40 MHz IF path<br>100/160 MHz IF path<br>40 MHz alternate IF path <sup>3</sup><br>Bypass path (Option WB1) <sup>6</sup><br>Harmonic mixing mode<br>1           | Final IF240 MHz300 MHz326 MHzAdjustableL0 multiple (N) 41                                                                              | First IF (< 3.6 GHz)                                                          |
| IF frequency <sup>2</sup> Band Band 0 Band 1               | 40 MHz IF path<br>100/160 MHz IF path<br>40 MHz alternate IF path <sup>3</sup><br>Bypass path (Option WB1) <sup>6</sup><br>Harmonic mixing mode<br>1<br>1      | Final IF240 MHz300 MHz326 MHzAdjustableLO multiple (N) 41                                                                              | First IF (< 3.6 GHz)                                                          |
| IF frequency <sup>2</sup> Band Band 0 Band 1 Band 2        | 40 MHz IF path<br>100/160 MHz IF path<br>40 MHz alternate IF path <sup>3</sup><br>Bypass path (Option WB1) <sup>6</sup><br>Harmonic mixing mode<br>1<br>1<br>1 | Final IF         240 MHz         300 MHz         326 MHz         Adjustable         LO multiple (N) <sup>4</sup> 1         2           | First IF (< 3.6 GHz)                                                          |
| IF frequency <sup>2</sup> Band Band 0 Band 1 Band 2 Band 3 | 40 MHz IF path<br>100/160 MHz IF path<br>40 MHz alternate IF path <sup>3</sup><br>Bypass path (Option WB1) <sup>6</sup><br>Harmonic mixing mode<br>1<br>1<br>2 | Final IF         240 MHz         300 MHz         326 MHz         Adjustable         LO multiple (N) <sup>4</sup> 1         2         2 | First IF (< 3.6 GHz)                                                          |

1. Instantaneous bandwidth (1 dB bandwidth) available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency or modulation domain.

2. Double conversion below 3.6 GHz, single conversion above 3.6 GHz.

3. Only used for some frequencies below 3.6 GHz for best performance as determined by the instrument software.

4. N is the LO multiplication factor.

5. Enables bypassing of IF filters to provide access to wideband IF output from downconverter for use with an external digitizer. Available > 3.6 GHz. Full 1 GHz not available at band crossings.

6. IF frequency can be tuned from 200 to 800 MHz with a default value of 500 MHz.

### Standard Configuration - Options F08, F14, F18, F27

#### Frequency (cont'd)

| Frequency switching speed <sup>7, 8</sup>      |                                                                                                     |                                 |                                                          |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------|
| List mode switching speed <sup>9</sup>         | Band                                                                                                | Standard, nominal               | Option UNZ, nominal                                      |
| Baseband frequency offset change <sup>11</sup> | < 40 MHz<br>≥ 40 MHz to ≤ 100 MHz<br>> 100 MHz to < 180 MHz<br>> 180 MHz                            | 5 ms                            | 26 μs<br>12 μs<br>95 μs<br>11 μs                         |
| Arbitrary frequency change within:             | 0: < 3.6 GHz<br>1: 3.6 to 8.4 GHz<br>2: 8.4 to 13.6 GHz<br>3: 13.6 to 17.1 GHz<br>4: 17.1 to 27 GHz | 5 ms                            | 175 μs<br>175 μs<br>135 μs<br>135 μs<br>155 μs<br>145 μs |
| Non-list mode switching speed <sup>10</sup>    |                                                                                                     | Standard, nominal               | Option UNZ, nominal                                      |
| Baseband frequency offset change <sup>11</sup> |                                                                                                     | 5 ms                            | 250 μs                                                   |
| Arbitrary frequency change                     |                                                                                                     | 5 ms                            | 1 ms                                                     |
| Resolution bandwidth (RBW)                     |                                                                                                     |                                 |                                                          |
| Minimum RBW                                    | 1 Hz                                                                                                |                                 |                                                          |
| Maximum span:RBW ratio <sup>12</sup>           | 135 x 10 <sup>6</sup>                                                                               |                                 |                                                          |
| Maximum RBW (ENBW)                             | IF dither OFF                                                                                       | IF dither ON                    |                                                          |
| Flat top (160 MHz IF)                          | 31.25 MHz                                                                                           | 27.3 MHz                        |                                                          |
| Flat top (40 MHz IF)                           | 7.8 MHz                                                                                             | 3.9 MHz                         |                                                          |
| Gaussian top (160 MHz)                         | 19.4 MHz                                                                                            | 16.99 MHz                       |                                                          |
| Gaussian top (40 MHz)                          | 4.8 MHz                                                                                             | 2.4 MHz                         |                                                          |
| Video bandwidth (VBW)                          |                                                                                                     |                                 |                                                          |
| Range                                          | 1 Hz to maximum RBW and wide o                                                                      | open to 50 MHz                  |                                                          |
| Accuracy                                       | VBW is implemented by averaging                                                                     | g to achieve a similar variance | reduction effect for the same VBW value.                 |
| Frequency span                                 |                                                                                                     |                                 |                                                          |
| Range                                          | Single FFT: 800 Hz to 160 MHz<br>Stepped: 800 Hz to 27 GHz                                          |                                 |                                                          |
| Resolution                                     | 2 Hz                                                                                                |                                 |                                                          |

7. When used with the M9018A PXIe chassis (2-link configuration: 1 x 8 [factory default]) and M9037A PXIe embedded controller.

8. Settled to within 2 kHz or 1 ppm, whichever is greater of final value. Does not include data acquisition or processing time.

Amplitude settled to within 0.1 dB. Channel filter set to none.

9. Time from trigger input to frequency and amplitude settled. Minimum IQ sample rate ≥ 6 MHz. Minimum spectrum acquisition ≥ 4.8 MHz. Minimum power acquisition channel filter bandwidth ≥ 4.8 MHz. For frequency changes crossing 3.6 GHz with option UNZ, switching time is 2 ms. For frequency changes crossing any other bands with option UNZ, switching time is < 300 µs.</p>

10. Mean time from IVI command to carrier frequency settled to within 2 kHz or 1 ppm, whichever is greater. Amplitude settled within 0.1 dB. Simultaneous carrier frequency and amplitude switching. For frequency changes crossing 3.6 GHz with option UNZ, switching time is 2 ms.

11. Baseband offset can be adjusted ± from carrier frequency within limits determined by RF analysis bandwidth and IF filter bandwidth. Synthesizer frequency and amplitude are not changing. Baseband offset settled to within 2 kHz.

12. Indicates minimum RBW which can be set for a given measurement span in 64-bit, stepped spectrum acquisition mode.

# Standard Configuration - Options F08, F14, F18, F27

### Frequency (cont'd)

| Frequency reference (M9300A PXIe frequency reference          | e module)                   |                                                                  |
|---------------------------------------------------------------|-----------------------------|------------------------------------------------------------------|
| Reference outputs                                             |                             |                                                                  |
| 100 MHz Out (Out 1 through Out 5)                             |                             |                                                                  |
| Amplitude                                                     | ≥ 10 dBm                    | 13 dBm, typical                                                  |
| Connectors                                                    | 5 SMB snap-on               |                                                                  |
| Impedance                                                     | 50 Ω, nominal               |                                                                  |
| 10 MHz Out                                                    |                             |                                                                  |
| Amplitude                                                     | 9.5 dBm, nominal            |                                                                  |
| Connectors                                                    | 1 SMB snap-on               |                                                                  |
| Impedance                                                     | 50 Ω, nominal               |                                                                  |
| OCXO Out                                                      |                             |                                                                  |
| Amplitude                                                     | 11.5 dBm, nominal           |                                                                  |
| Connectors                                                    | 1 SMB snap-on               |                                                                  |
| Impedance                                                     | 50 Ω, nominal               |                                                                  |
| Frequency accuracy                                            |                             |                                                                  |
| Same as accuracy of internal time base or external refere     | nce input                   |                                                                  |
| Internal timebase                                             |                             |                                                                  |
| Accuracy                                                      | ± [(time since last adjustn | nent x aging rate) ± temperature effects ± calibration accuracy] |
| Frequency stability                                           |                             |                                                                  |
| Aging rate                                                    |                             |                                                                  |
| Daily                                                         | < ± 0.5 ppb/day, after 72   | hours of warm-up                                                 |
| Yearly                                                        | < ± 0.1 ppm/year, after 7   | 2 hours of warm-up                                               |
| Total 10 years                                                | < ± 0.6 ppm/10 years, af    | ter 72 hours of warm-up                                          |
| Achievable initial calibration accuracy (at time of shipment) | ± 5 x 10-8                  |                                                                  |
| Temperature effects                                           |                             |                                                                  |
| 20 to 30 °C                                                   | < ± 10 ppb                  |                                                                  |
| Full temperature range                                        | < ± 50 ppb                  |                                                                  |
| Warm up                                                       |                             |                                                                  |
| 5 minutes over +20 to +30 °C, with respect to 1 hour          | < ± 0.1 ppm                 |                                                                  |
| 15 minutes over +20 to +30 °C, with respect to 1 hour         | < ± 0.01 ppm                |                                                                  |
| External reference input                                      |                             |                                                                  |
| Frequency                                                     | 1 to 110 MHz, sine wave     |                                                                  |
| Lock range                                                    | ± 1 ppm, nominal            |                                                                  |
| Amplitude                                                     | 0 to 10 dBm, nominal        |                                                                  |
| Connector                                                     | 1 SMB snap-on               |                                                                  |
| Impedance                                                     | 50 Ω, nominal               |                                                                  |

# Standard Configuration - Options F08, F14, F18, F27

#### Amplitude

| Input level                               |                                                          |                             |           |                          |                             |           |
|-------------------------------------------|----------------------------------------------------------|-----------------------------|-----------|--------------------------|-----------------------------|-----------|
| Max safe average total power              | +35 dBm                                                  |                             |           |                          |                             |           |
| Max DC voltage                            | ± 10 Vdc                                                 |                             |           |                          |                             |           |
| Max RF input                              | +30 dBm                                                  |                             |           |                          |                             |           |
| (specified performance)                   |                                                          |                             |           |                          |                             |           |
| Expected input level setting              | Pre-amplifier OFF                                        | F, peak to average          | 0 dB      |                          |                             |           |
| Range                                     | –170 to +30 dBm                                          |                             |           |                          |                             |           |
| Resolution                                | 0.01 dB                                                  |                             |           |                          |                             |           |
| Electronic attenuator <sup>13</sup>       |                                                          |                             |           |                          |                             |           |
| Frequency range                           | 9 kHz to 27 GHz                                          |                             |           |                          |                             |           |
| Attenuation range                         | 0 to 42 dB                                               |                             |           |                          |                             |           |
| Step size                                 | 0.25 dB                                                  |                             |           |                          |                             |           |
| Absolute amplitude accuracy <sup>14</sup> |                                                          |                             |           |                          |                             |           |
| Frequency <sup>15</sup>                   | Pre-amp OFF <sup>16</sup>                                |                             |           | Pre-amp ON <sup>17</sup> |                             |           |
|                                           | Specification                                            | 95 <sup>th</sup> percentile | Typical   | Specification            | 95 <sup>th</sup> percentile | Typical   |
| 100 kHz to 1 MHz                          | ± 1.53 dB                                                | ± 0.97 dB                   | ± 0.71 dB | ± 1.76 dB                | ± 1.01 dB                   | ± 0.71 dB |
| 1 MHz to 20 MHz                           | ± 1.23 dB                                                | ± 0.7 dB                    | ± 0.49 dB | ± 1.59 dB                | ± 0.9 dB                    | ± 0.61 dB |
| 20 MHz to 100 MHz                         | ± 0.61 dB                                                | ± 0.32 dB                   | ± 0.17 dB | ± 0.71 dB                | ± 0.41 dB                   | ± 0.24 dB |
| 100 MHz to 3.6 GHz                        | ± 0.54 dB                                                | ± 0.25 dB                   | ± 0.13 dB | ± 0.74 dB                | ± 0.38 dB                   | ± 0.26 dB |
| 3.6 GHz to 8 GHz                          | ± 0.61 dB                                                | ± 0.31 dB                   | ± 0.16 dB | ± 0.85 dB                | ± 0.4 dB                    | ± 0.26 dB |
| 8 GHz to 14 GHz                           | ± 0.71 dB                                                | ± 0.36 dB                   | ± 0.23 dB | ± 0.95 dB                | ± 0.45 dB                   | ± 0.32 dB |
| 14 GHz to 18 GHz                          | ± 0.79 dB                                                | ± 0.47 dB                   | ± 0.35 dB | ± 1.03 dB                | ± 0.59 dB                   | ± 0.47 dB |
| 18 GHz to 26.5 GHz                        | ± 1.43 dB                                                | ± 0.55 dB                   | ± 0.37 dB | ± 2.12 dB                | ± 1.08 dB                   | ± 0.92 dB |
| 26.5 GHz to 27 GHz                        | ± 2.37 dB                                                | ± 0.57 dB                   | ± 0.4 dB  | ± 2.65 dB                | ± 0.66 dB                   | ± 0.48 dB |
| Frequency <sup>15</sup>                   | Pre-amp OFF, expected input level ≤ –5 dBm <sup>18</sup> |                             |           |                          |                             |           |
|                                           | Specification                                            | 95 <sup>th</sup> percentile | Typical   |                          |                             |           |
| 100 kHz to 1 MHz                          | ± 1.21 dB                                                | ± 0.74 dB                   | ± 0.53 dB |                          |                             |           |
| 1 MHz to 20 MHz                           | ± 1.14 dB                                                | ± 0.66 dB                   | ± 0.46 dB |                          |                             |           |
| 20 MHz to 100 MHz                         | ± 0.69 dB                                                | ± 0.36 dB                   | ± 0.21 dB |                          |                             |           |
| 100 MHz to 3.6 GHz                        | ± 0.67 dB                                                | ± 0.35 dB                   | ± 0.23 dB |                          |                             |           |

13. Electronic attenuator set by firmware based on expected input level, peak to average, and frequency settings.

14. Measured using an attenuator with VSWR performance equal to or better than the 8490D-020 coaxial attenuator.

Applies after comprehensive alignment and module temperature within ± 3 °C.

15. Frequency is exclusive on the start frequency and inclusive on the stop frequency.

16. Expected input level set to 6 dBm below 3.6 GHz. Expected input level set to -5 dBm above 3.6 GHz. Peak to average 0 dBm.

17. Expected input level set to -3 dBm. Peak to average 0 dBm.

18. Expected input level set to -5 dBm. Peak to average 0 dBm.

### Standard Configuration - Options F08, F14, F18, F27

#### Amplitude (cont'd)

#### Amplitude repeatability and linearity

|                                                       | Pre-amp OFF, typ                   | pical                     |                     |        | Pre-amp ON   | I, typical |                     |
|-------------------------------------------------------|------------------------------------|---------------------------|---------------------|--------|--------------|------------|---------------------|
| Repeatability <sup>19</sup>                           | ± 0.03 dB                          |                           |                     |        | ± 0.06 dB    |            |                     |
| Linearity <sup>20</sup>                               | ADC dither high                    |                           |                     |        | ADC dither   | Low        |                     |
| Input signal relative to expected input level setting | Specification                      | Туріса                    | l                   |        | Specificatio | n          | Typical             |
| > -35 dB                                              | 0.08 dB                            | 0.03 d                    | В                   |        | 0.08 dB      |            | 0.03 dB             |
| ≤ -35 dB                                              | 0.1 dB                             | 0.04 d                    | В                   |        | 0.21 dB      |            | 0.1 dB              |
| IF flatness, typical <sup>21, 22</sup>                | Across any 20 M<br>in 40 MHz path  | Hz Across an<br>in 160 MH | y 20 MHz<br>Iz path | 40 MH  | z            | 100 MHz    | 160 MHz             |
| ≤ 13.6 GHz                                            | ± 0.08 dB                          | ± 0.14 dB                 |                     | ± 0.16 | dB           | ± 0.21 dB  | ± 0.34 dB           |
| > 13.6 GHz                                            | ± 0.12 dB                          | ± 0.14 dB                 |                     | ± 0.17 | dB           | ± 0.31 dB  | ± 0.47 dB           |
| IF phase linearity, typical <sup>21, 22</sup>         | Across any 20 MI<br>in 40 MHz path | Hz Across an<br>in 160 MH | y 20 MHz<br>Iz path | 40 MH  | z            | 100 MHz    | 160 MHz             |
| ≤ 13.6 GHz                                            | ± 0.68 °                           | ± 1.28 °                  |                     | ± 0.81 | 0            | ± 1.34 °   | ± 1.56 °            |
| > 13.6 GHz                                            | ± 1.46 °                           | ± 1.54 °                  |                     | ± 1.69 | 0            | ± 2.56 °   | ± 3.59 °            |
| IF bandwidth filter switching uncert                  | ainty <sup>23</sup>                |                           |                     |        |              |            |                     |
|                                                       | Specification                      |                           | Typical             |        |              | Nomina     | al                  |
| Preamp On                                             | ± 0.3 dB                           |                           | ± 0.14 dE           | 3      |              | ± 0.1 dl   | В                   |
| Preamp Off                                            | ± 0.45 dB                          |                           | ± 0.25 dl           | 3      |              | ± 0.2 d    | В                   |
| Expected input level switching unce                   | ertainty <sup>24</sup>             |                           |                     |        |              |            |                     |
|                                                       | Pre-amp OFF <sup>25</sup>          |                           |                     |        |              | Pre-am     | 1p ON <sup>26</sup> |
|                                                       | ≤ –5 dBm                           |                           | > –5 dBr            | n      |              | ≤ –3 dE    | 3m                  |
|                                                       | Specification                      | Typical                   | Specifica           | ation  | Typical      | Specific   | cation Typical      |
| > 100 kHz to 1 MHz                                    | ± 0.14 dB                          | ± 0.03 dB                 | ± 1.53 dE           | 3      | ± 0.6 dB     | ± 0.48 (   | dB ± 0.18 dB        |
| > 1 to 20 MHz                                         | ± 0.18 dB                          | ± 0.04 dB                 | ± 1.56 dE           | 3      | ± 0.64 dB    | ± 0.48 (   | dB ± 0.18 dB        |
| > 20 to 100 MHz                                       | ± 0.15 dB                          | ± 0.04 dB                 | ± 0.56 dB           | 3      | ± 0.24 dB    | ± 0.39 (   | dB ± 0.15 dB        |
| > 100 MHz to 3.6 GHz                                  | ± 0.16 dB                          | ± 0.04 dB                 | ± 0.53 dE           | 3      | ± 0.24 dB    | ± 0.44 (   | dB ± 0.18 dB        |
| > 3.6 to 8 GHz                                        | ± 0.18 dB                          | ± 0.05 dB                 | ± 0.39 dE           | 3      | ± 0.15 dB    | ± 0.34 (   | dB ± 0.12 dB        |
| > 8 to 17 GHz                                         | ± 0.16 dB                          | ± 0.05 dB                 | ± 0.71 dE           | 3      | ± 0.19 dB    | ± 0.53 (   | dB ± 0.17 dB        |
| > 17 to 24 GHz                                        | ± 0.19 dB                          | ± 0.05 dB                 | ± 2.38 dE           | 3      | ± 0.39 dB    | ± 0.78 d   | dB ± 0.17 dB        |
| > 24 to 27 GHz                                        | ± 0.18 dB                          | ± 0.06 dB                 | ± 1.39 dE           | 3      | ± 0.31 dB    | ± 0.55 (   | dB ± 0.16 dB        |

19. Input level –11 dBm, LO nulling run at ~1 GHz, 150 ms allowed for amplitude settling, measurement made at 1 kHz from center of IF.

20. Input level 20 dB above the noise floor and ADC dither on, no change in hardware settings, below expected input level.

21. Deviation from the mean error of the entire bandwidth, all conversion types.

22. Expected input level = 0 dBm, Mixer level offset = 0.

23. Amplitude error relative to the reference IF bandwidth filter of 40 MHz. Preamplifier mode is set in the on or off position, not Auto.

24. Measured using an attenuator with VSWR performance equal to or better than the 8490D-020 coaxial attenuator. Peak to average = 0 dB.

25. Measurement referenced to Expected input level setting of -5 dBm.

26. Measurement referenced to Expected input level setting of -3 dBm.

# Standard Configuration - Options F08, F14, F18, F27

### Amplitude (cont'd)

#### Amplitude switching speed 27

| Option UNZ, nominal                      |                  |              |             |
|------------------------------------------|------------------|--------------|-------------|
| List mode switching speed                | 9 kHz to 3.6 GHz | 3.6 to 6 GHz | 6 to 27 GHz |
| From lower to higher power <sup>28</sup> | 90 µs            | 180 µs       | 50 µs       |
| From higher to lower power <sup>28</sup> | 90 µs            | 50 µs        | 50 µs       |
| Pre-amp OFF to pre-amp ON                | 245 μs           | 190 µs       | 190 µs      |
| Pre-amp ON to pre-amp OFF                | 160 μs           | 220 µs       | 90 µs       |
| Non-list mode switching speed            | 1 ms             |              |             |
| Standard, nominal                        | 5 ms             |              |             |

#### Input voltage standing wave ratio (VSWR)

|                              | Pre-amp OFF, nominal              | Pre-amp ON, nominal |
|------------------------------|-----------------------------------|---------------------|
| 10 MHz to ≤ 50 MHz           | < 1.38 : 1                        | < 2.57 : 1          |
| $>$ 50 MHz to $\leq$ 3 GHz   | < 1.21 : 1                        | < 1.9 : 1           |
| $>$ 3 GHz to $\leq$ 3.6 GHz  | < 1.12 : 1                        | < 1.61 : 1          |
| $>$ 3.6 GHz to $\leq$ 12 GHz | < 1.49 : 1                        | < 1.4 : 1           |
| > 12 GHz to $\leq$ 20 GHz    | < 1.99 : 1                        | < 1.99 : 1          |
| > 20 GHz to $\leq$ 23 GHz    | < 1.36 : 1                        | < 1.36 : 1          |
| > 23 GHz to ≤ 27 GHz         | < 1.81 : 1                        | < 1.82 : 1          |
| Trace detectors              |                                   |                     |
| With IVI driver              | Normal                            |                     |
| With 89600 VSA software      | Normal, Max, Sample, Average, Min |                     |
| Preamplifier                 |                                   |                     |
| Frequency range              |                                   |                     |
| Option F08                   | 9 kHz to 8.4 GHz                  |                     |
| Option F14                   | 9 kHz to 14 GHz                   |                     |
| Option F18                   | 9 kHz to 18 GHz                   |                     |
| Option F27                   | 9 kHz to 27 GHz                   |                     |
| Gain <sup>29</sup>           | Typical                           |                     |
| < 3.6 GHz                    | +15.5 dB                          |                     |
| 3.6 to < 15 GHz              | +25.0 dB                          |                     |
| 15 to < 25 GHz               | +22.0 dB                          |                     |
| 25 to 27 GHz                 | +19.0 dB                          |                     |

27. When using M9018A PXIe chassis (2-link configuration: 1 x 8 [factory default]) and M9037A PXIe embedded controller. Amplitude settled to within 0.1 dB. Does not include data acquisition or processing time.

28. No pre-amplifier switching.

29. Gain is normalized to pre-amplifier OFF state.

### Standard Configuration - Options F08, F14, F18, F27

#### Dynamic range

#### Displayed average noise level (DANL)<sup>30</sup>

|             |                    | Specification         |                      | Typical               |                      |
|-------------|--------------------|-----------------------|----------------------|-----------------------|----------------------|
|             |                    | Noise corrections OFF | Noise corrections ON | Noise corrections OFF | Noise corrections ON |
| Pre-amp OFF | 9 to 300 kHz       | –120 dBm/Hz           | –125 dBm/Hz          | –129 dBm/Hz           | –135 dBm/Hz          |
|             | 300 kHz to 51 MHz  | –143 dBm/Hz           | –147 dBm/Hz          | –147 dBm/Hz           | –154 dBm/Hz          |
|             | 51 to 800 MHz      | –147 dBm/Hz           | –158 dBm/Hz          | –150 dBm/Hz           | –161 dBm/Hz          |
|             | 800 MHz to 2.5 GHz | –145 dBm/Hz           | –156 dBm/Hz          | –148 dBm/Hz           | –158 dBm/Hz          |
|             | 2.5 to 3.6 GHz     | –142 dBm/Hz           | –153 dBm/Hz          | –146 dBm/Hz           | –157 dBm/Hz          |
|             | 3.6 to 7.4 GHz     | –146 dBm/Hz           | –156 dBm/Hz          | –149 dBm/Hz           | –160 dBm/Hz          |
|             | 7.4 to 10 GHz      | –144 dBm/Hz           | –155 dBm/Hz          | –148 dBm/Hz           | –158 dBm/Hz          |
|             | 10 to 13.6 GHz     | –142 dBm/Hz           | –152 dBm/Hz          | –145 dBm/Hz           | –156 dBm/Hz          |
|             | 13.6 to 17 GHz     | –136 dBm/Hz           | –147 dBm/Hz          | –141 dBm/Hz           | –151 dBm/Hz          |
|             | 17 to 20.5 GHz     | –133 dBm/Hz           | –144 dBm/Hz          | –136 dBm/Hz           | –147 dBm/Hz          |
|             | 20.5 to 22 GHz     | –131 dBm/Hz           | –142 dBm/Hz          | –135 dBm/Hz           | –145 dBm/Hz          |
|             | 22 to 25.5 GHz     | –123 dBm/Hz           | –134 dBm/Hz          | –128 dBm/Hz           | –138 dBm/Hz          |
|             | 25.5 to 27 GHz     | –117 dBm/Hz           | –127 dBm/Hz          | –122 dBm/Hz           | –133 dBm/Hz          |
| Pre-amp ON  | 9 to 300 kHz       | –120 dBm/Hz           | –126 dBm/Hz          | –131 dBm/Hz           | –134 dBm/Hz          |
|             | 300 kHz to 51 MHz  | –135 dBm/Hz           | –146 dBm/Hz          | –142 dBm/Hz           | –152 dBm/Hz          |
|             | 51 to 2.3 GHz      | –154 dBm/Hz           | –165 dBm/Hz          | –158 dBm/Hz           | –168 dBm/Hz          |
|             | 2.3 to 3.6 GHz     | –153 dBm/Hz           | –164 dBm/Hz          | –157 dBm/Hz           | –168 dBm/Hz          |
|             | 3.6 to 9 GHz       | –152 dBm/Hz           | –162 dBm/Hz          | –156 dBm/Hz           | –166 dBm/Hz          |
|             | 9 to 16.2 GHz      | –149 dBm/Hz           | –160 dBm/Hz          | –154 dBm/Hz           | –164 dBm/Hz          |
|             | 16.2 to 20.5 GHz   | –147 dBm/Hz           | –157 dBm/Hz          | –152 dBm/Hz           | –163 dBm/Hz          |
|             | 20.5 to 23.5 GHz   | –143 dBm/Hz           | –153 dBm/Hz          | –149 dBm/Hz           | –159 dBm/Hz          |
|             | 23.5 to 25.6 GHz   | –139 dBm/Hz           | –150 dBm/Hz          | –145 dBm/Hz           | –155 dBm/Hz          |
|             | 25.6 to 27 GHz     | –136 dBm/Hz           | –147 dBm/Hz          | –141 dBm/Hz           | –152 dBm/Hz          |

For nominal, see figure 4.

#### Gain compression (0.1 dB two-tone), nominal <sup>31</sup>

| Frequency    | Pre-amp OFF | Pre-amp ON |
|--------------|-------------|------------|
| < 3.6 GHz    | 0 dBm       | –15 dB     |
| 3.6 to 5 GHz | –5 dBm      | –28 dB     |
| 5 to 17 GHz  | –3 dBm      | –27 dB     |
| 17 to 27 GHz | +1 dBm      | –21 dB     |

30. Expected input level = -60 dBm, Mixer level offset = 0 dBm, Noise Correction ON uses 100 averages, Conversion = auto, PeakToAverage = 0 dB.

31. Large signals can cause the analyzer to incorrectly measure on-screen signals because of two-tone gain compression.

This specification tells how large an interfering signal must be in order to cause a 0.1 dB change in a low power signal.

Tone spacing = 100 kHz, measuring a -30 dBm signal for the low power tone. Expected input level = 0 dBm, Mixer level offset = 0 dB.

### Standard Configuration - Options F08, F14, F18, F27

#### Dynamic range (cont'd)

#### Third order intermodulation distortion (TOI)

|                                  | Frequency          | Specification <sup>34</sup> | Typical   | Nominal   |
|----------------------------------|--------------------|-----------------------------|-----------|-----------|
| Pre-amp OFF <sup>32</sup>        | 10 to 600 MHz      | +26 dBm / -52 dBc           | +29 dBm   | +31 dBm   |
|                                  | 600 MHz to 3.6 GHz | +26 dBm / -52 dBc           | +31 dBm   | +33.5 dBm |
|                                  | 3.6 to 13.6 GHz    | +26 dBm / -52 dBc           | +29 dBm   | +30 dBm   |
|                                  | 13.6 to 16.5 GHz   | +24 dBm / -48 dBc           | +28.5 dBm | +29.5 dBm |
|                                  | 16.5 to 18 GHz     | +21 dBm / -42 dBc           | +25 dBm   | +28.5 dBm |
|                                  | 18 to 27 GHz       | +24 dBm / -48 dBc           | +29 dBm   | +31 dBm   |
| Pre-amp ON <sup>33</sup>         | 10 to 600 MHz      | +3 dBm / -56 dBc            | +8.5 dBm  | +12.5 dBm |
|                                  | 600 MHz to 3.6 GHz | +4 dBm / -58 dBc            | +10 dBm   | +13 dBm   |
|                                  | 3.6 to 13.6 GHz    | –1.5 dBm / -47 dBc          | +3.5 dBm  | +4.5 dBm  |
|                                  | 13.6 to 16.5 GHz   | –4.5 dBm / -41 dBc          | +2 dBm    | +4 dBm    |
|                                  | 16.5 to 18 GHz     | –9 dBm / -32 dBc            | –3 dBm    | +1 dBm    |
|                                  | 18 to 24 GHz       | –7 dBm / -36 dBc            | 0 dBm     | +3 dBm    |
|                                  | 24 to 27 GHz       | –1 dBm / -48 dBc            | +5 dBm    | +7.5 dBm  |
| Second harmonic distortion (SHI) |                    |                             |           |           |
|                                  | Frequency          | Typical <sup>37</sup>       | Nominal   |           |
| Pre-amp OFF <sup>35</sup>        | 10 to 300 MHz      | +56 dBm / –56 dBc           | +60 dBm   |           |
|                                  | 300 MHz to 1.8 GHz | +60 dBm / –60 dBc           | +62 dBm   |           |
|                                  | 1.8 to 5.2 GHz     | +41 dBm / –41 dBc           | +44 dBm   |           |
|                                  | 5.2 to 10 GHz      | +32 dBm / –32 dBc           | +36 dBm   |           |
|                                  | 10 to 13.5 GHz     | +21 dBm / –21 dBc           | +25 dBm   |           |
| Pre-amp ON <sup>36</sup>         | 10 MHz to 1.8 GHz  | +33 dBm / –63 dBc           | +35 dBm   |           |
|                                  | 1.8 to 4 GHz       | +16 dBm / –46 dBc           | +22 dBm   |           |
|                                  | 4 to 10 GHz        | 0 dBm / -30 dBc             | +3 dBm    |           |
|                                  | 10 to 13.5 GHz     | –10 dBm / –20 dBc           | –5 dBm    |           |

32. Tone separation = 100 kHz, Expected input level = 3 dBm, Mixer offset level = 0 dB, PeakToAverage = 6 dB, Conversion type Auto. Signal level of 0 dBm used to calculate distortion in dBc.

33. Tone separation = 100 kHz, Expected input level = -22 dBm, Mixer offset level = 0 dB, PeakToAverage = 6 dB, Conversion type Auto. Signal level of -25 dBm used to calculate distortion in dBc.

34. TOI = third order intercept. The TOI is given by the input tone level (in dBm) minus (distortion/2) where distortion is the relative level of the distortion tones in dBc.

35. Expected input level = 0 dBm . Signal level of 0 dBm used to calculate distortion in dBc.

36. Expected input level = -30 dBm . Signal level of -30 dBm used to calculate distortion in dBc.

37. SHI = second harmonic intercept. The SHI is given by the input power in dBm minus the second harmonic distortion level relative to the input level in dBc.

### Standard Configuration - Options F08, F14, F18, F27

### Dynamic range (cont'd)



Figure 3. Nominal second harmonic distortion, expected input level = 0 dBm.



Figure 4. Nominal displayed average noise level. Expected input level = -60 dBm, Mixer level offset = 0 dBm, Noise correction (NC) ON uses 100 averages.

# Technical Specifications and Characteristics Standard Configuration - Options F08, F14, F18, F27 Dynamic range (cont'd)



Figure 5. Dynamic range at 1 GHz.



Figure 6. Dynamic range at 5.8 GHz.



Figure 7. Dynamic range at 18 GHz.

### Standard Configuration - Options F08, F14, F18, F27

### Spectral purity

#### Phase noise 38

| Center frequency | Offset  | Specification, noise corrections OFF | Typical, noise<br>corrections OFF | Typical, noise<br>corrections ON |
|------------------|---------|--------------------------------------|-----------------------------------|----------------------------------|
| 1 GHz            | 100 Hz  |                                      | –88 dBc/Hz                        |                                  |
|                  | 1 kHz   |                                      | –105 dBc/Hz                       |                                  |
|                  | 10 kHz  | –107 dBc/Hz                          | –110 dBc/Hz                       |                                  |
|                  | 100 kHz |                                      | –107 dBc/Hz                       |                                  |
|                  | 300 kHz |                                      | –118 dBc/Hz                       |                                  |
|                  | 1 MHz   | –131 dBc/Hz                          | –134 dBc/Hz                       | –134 dBc/Hz                      |
|                  | 3 MHz   |                                      | –139 dBc/Hz                       | –141 dBc/Hz                      |
|                  | 10 MHz  |                                      | –141 dBc/Hz                       | –144 dBc/Hz                      |

 Expected input level = 0 dBm, Mixer level offset = 0 dB, Pre-amp = OFF, Noise correction ON results use a counted average of 100, PeakToAverage = 5.



Figure 8. Nominal phase noise 1 to 26.9 GHz. Expected input level = 0 dBm, Mixer level offset = 0 dB, Pre-amp = OFF, Noise correction ON results use a counted average of 100, PeakToAverage = 5.

### Standard Configuration - Options F08, F14, F18, F27

#### Spectral purity (cont'd)

#### Residuals, images & spurious responses

Non-input related spurs 39, 40

< –100 dBm, nominal

| LO related spurs <sup>41</sup> | Offset          | Nominal                   |                             | Nominal             |              | Nominal        |                    | Nominal     | Nominal   |
|--------------------------------|-----------------|---------------------------|-----------------------------|---------------------|--------------|----------------|--------------------|-------------|-----------|
|                                | 200 Hz - 1 kH   | lz                        | 1 - 10 kHz                  |                     | 10-100 kHz   |                | 100 kHz-10 MHz     |             | > 10 MHz  |
| 100 kHz to 3.6 GHz             | –67 dBc         | –83 dBc                   | -66 dBc                     | –83 dBc             | –67 dBc      | –79 dBc        | -65 dBc            | –74 dBc     | < –65 dBc |
| 3.6 to 8.4 GHz                 | -62 dBc         | –81 dBc                   | -63 dBc                     | –81 dBc             | -68 dBc      | –83 dBc        | -64 dBc            | –75 dBc     |           |
| 8.4 to 13.6 GHz                | –57 dBc         | –76 dBc                   | –59 dBc                     | –78 dBc             | -64 dBc      | –78 dBc        | -63 dBc            | –72 dBc     |           |
| 13.6 to 17.1 GHz               | –55 dBc         | –74 dBc                   | –57 dBc                     | –79 dBc             | -62 dBc      | –75 dBc        | -61 dBc            | –68 dBc     |           |
| 17.1 to 27 GHz                 | –52 dBc         | –70 dBc                   | –52 dBc                     | –74 dBc             | -58 dBc      | –71 dBc        | -48 dBc            | –64 dBc     |           |
| Frac-N-Spur <sup>42</sup>      | < –50 dBc       | : + 20log(N), n           | ominal                      |                     | IF dither    | On, < -65 + 2  | 20log(N), nominal  |             |           |
| First and higher ord           | er spurious r   | esponses <sup>39, 4</sup> | 3                           |                     |              |                |                    |             |           |
|                                | Below the       | noise floor by            | design                      |                     |              |                |                    |             |           |
| IF rejection, nomina           | l 44            |                           |                             |                     |              |                |                    |             |           |
| Frequency                      |                 | 40 M                      | Hz IF path                  |                     | 40 MHz alte  | ernate IF path | 100/160            | MHz IF path |           |
| < 3.6 GHz                      |                 |                           |                             |                     |              |                |                    |             |           |
| Final IF                       |                 | -80 c                     | IBc                         |                     | –85 dBc      |                | –82 dBc            |             |           |
| First IF                       |                 | -64 c                     | IBc                         |                     | –80 dBc      |                | –71 dBc            |             |           |
| 3.6 to 13.6 GHz                |                 | -78 a                     | Вс                          |                     | –83 dBc      |                | –78 dBc            |             |           |
| 13.6 to 20 GHz                 |                 | –70 a                     | Вс                          |                     | –81 dBc      |                | –70 dBc            |             |           |
| 20 to 27 GHz                   |                 | -53 c                     | IBc                         |                     | –80 dBc      |                | –55 dBc            |             |           |
| Image responses 45             |                 |                           |                             |                     | Specificatio | on             | Typical            |             |           |
| ≤ 3.6 GHz                      |                 | f <sub>image</sub>        | $= (f_{C} \pm 2 * f_{FI})$  | NAL IF)             | -63 dBc      |                | -72 dBc            |             |           |
|                                |                 | f <sub>IMAGE</sub>        | $= (f_{C} \pm 2 * f_{FI})$  | <sub>RST IF</sub> ) | –77 dBc      |                | –85 dBc            |             |           |
| > 3.6 GHz (digital ima         | age rejection ( | DN) f <sub>image</sub>    | $= (f_{C} \pm 2 * f_{FII})$ | <sub>NAL IF</sub> ) | Images are i | nominally bel  | ow the noise floor |             |           |
| Line related spuriou           | is responses    |                           |                             |                     |              |                |                    |             |           |
|                                |                 | -60 c                     | IBc, nominal                |                     |              |                |                    |             |           |
| Spurious free dynar            | nic range (SF   | DR)                       |                             |                     |              |                |                    |             |           |
|                                |                 | -72 (                     | dBc, nomina                 | al                  |              |                |                    |             |           |
| LO emission <sup>46</sup>      |                 | Pre-a                     | mp OFF, non                 | ninal               |              |                | Pre-amp            | ON, nomina  | l         |
| ≤ 100 MHz                      |                 | -69 c                     | IBm                         |                     |              |                | –82 dBm            |             |           |
| > 100 MHz                      |                 | -80 c                     | IBm                         |                     |              |                |                    |             |           |

39. Only applies in stepped spectrum mode with digital image rejection and IF dither enabled.

40. Expected input level: -50 dBm, mixer level offset: 0 dBm, pre-amp OFF, noise correction OFF. Enabling pre-amp and/or noise correction will yield a nominal 10 dB improvement. Known non-input related spur at 2.4 GHz nominally < -85 dBm.

41. Input level: -10 dBm, expected input level: 0 dBm, mixer level offset: 0 dBm, averages: 50.

42. N is the LO multiplication factor. See LO multiplier table for the N value versus frequency range.

43. Input level: 0 dBm, expected input level: 0 dBm, mixer level offset: 0 dBm, noise correction ON, averages: 10.

44. Suppression of signal at IF frequencies when turned at least 2x IF filter bandwidth away.

45. Expected input level = -10 dBm, Mixer level offset = 0 dB, Peak to average = 0 dB, fC = analyzer center frequency, fIMAGE = input frequency that is an image to analyzer center frequency, fFINAL IF = 240, 300, 326 MHz, fFIRST IF = 5040, 5100, 5126 MHz.

Digital image rejection only available for frequencies > 3.6 GHz in stepped spectrum mode.

46. Expected input level = -50 dBm, RF attenuation = 0 dB. LO emissions refers to the LO power leaking out at the RF input port.

### Standard Configuration - Options F08, F14, F18, F27

#### Time and acquisition

| Maximum capture memory <sup>47</sup>     | Memory size | Non-list mode acquisition limit         | List mode acquisition limit           |  |  |
|------------------------------------------|-------------|-----------------------------------------|---------------------------------------|--|--|
| Option M01                               | 512 MB      | 128 MSample                             | 64 MSample                            |  |  |
| Option M05                               | 2 GB        | 512 MSample                             | 256 MSample                           |  |  |
| Option M10                               | 4 GB        | 1 GSample                               | 512 MSample <sup>48</sup>             |  |  |
| Segments                                 |             |                                         |                                       |  |  |
| Minimum length                           |             | 32 bytes                                |                                       |  |  |
| Maximum length                           |             | Full capture memory <sup>49</sup>       |                                       |  |  |
| Maximum sample rate                      |             | Specification                           |                                       |  |  |
| Option B04 / 40 MHz                      |             | 50 MS/s complex, 100 MS/s real          |                                       |  |  |
| Option B10 / 100 MHz                     |             | 125 MS/s complex, 250 MS/s real         |                                       |  |  |
| Option B16 / 160 MHz                     |             | 200 MS/s complex, 400 MS/s real         |                                       |  |  |
| List mode                                |             |                                         |                                       |  |  |
| Maximum number of segments               |             | 3201                                    |                                       |  |  |
| Trigger sources                          |             | External, magnitude, wideband magnitude | , wideband burst, software, immediate |  |  |
| Trigger modes                            |             | Per acquisition                         |                                       |  |  |
| Triggering                               |             |                                         |                                       |  |  |
| Delay range <sup>50</sup>                |             | -0.1 to +1 s                            |                                       |  |  |
| Delay resolution                         |             | 1 sample                                |                                       |  |  |
| Delay accuracy                           |             | 2 ns                                    |                                       |  |  |
| Holdoff range                            |             | 0 to 1 s                                |                                       |  |  |
| Holdoff resolution                       |             | 10 ns                                   |                                       |  |  |
| Acquisition minimum size                 |             | 2 samples                               |                                       |  |  |
| Acquisition maximum size                 |             | 1 GSamples                              |                                       |  |  |
| Timing <sup>51</sup>                     |             |                                         |                                       |  |  |
| Channel-to-channel synchronization       |             | ≤ ± 1 ns, nominal                       |                                       |  |  |
| Repeatability across instrument state of | changes     | < 50 ps, nominal                        |                                       |  |  |

47. Sample count is based on 32-bit samples. For 64-bit samples, divide by 2.

48. The maximum size for a single list point capture is limited to 512 MSamples (2 GB). However, with option M10, total capture of up to 3.999 GB is available across all list mode captures.

49. The user can allocate memory for one or more acquisitions. Each acquisition takes up the memory that needs to be a power of 2. Minimum is 32 bytes.

50 Negative trigger delay limited to capture size.

51. Configured with a M9018A PXIe chassis for up to 4 channels. Repeatability across power cycles, IVI sessions, and module slot changes. Chassis FPGA version 1.05 or greater required.

### Standard Configuration - Options F08, F14, F18, F27

#### Measurement speed

| IQ data capture <sup>52</sup>                 | Nominal                                   |                              |         |  |
|-----------------------------------------------|-------------------------------------------|------------------------------|---------|--|
| Large block (50 MSamples)                     | <i>1.2 s</i> Transferred in 10 kSa blocks |                              |         |  |
| Small block (100 captures, 100 ksamples each) | 252 ms                                    | Transferred in 10 kSa blocks |         |  |
| Adjust level, freq (10 ksamples)              | 1.6 ms                                    | Transferred in 10 kSa blocks |         |  |
| Power measurements <sup>53</sup>              |                                           |                              |         |  |
| Channel power settings & filter bandwidth     | Acquisition Time                          | Averages                     | Nominal |  |
| 3.84 MHz                                      | 400 µs                                    | None                         | 1.7 ms  |  |
|                                               |                                           | 10                           | 8.6 ms  |  |
|                                               | 100 µs                                    | None                         | 1.2 ms  |  |
|                                               |                                           | 10                           | 3.8 ms  |  |
|                                               | 50 µs                                     | None                         | 1.1 ms  |  |
|                                               |                                           | 10                           | 3.3 ms  |  |
| 30 kHz                                        | 100 µs                                    | None                         | 3.9 ms  |  |
|                                               |                                           | 10                           | 30.7 ms |  |

 Capture block, transfer to host memory, 160 MHz BW, excludes frequency band transitions, with M9037A PXIe embedded controller and M9018A PXIe chassis (2-link configuration: 1 x 8 [factory default]).

53. Transfer to host memory, 160 MHz IF bandwidth filter, excludes frequency band transitions, with M9037A PXIe embedded controller and M9018A PXIe chassis (2-link configuration: 1 x 8 [factory default]).



Figure 9. With 89600 VSA software Option SSA version 18.5 power spectrum measurement with M9037A PXIe embedded controller. M9214A IF digitizer in x8 slot and M9393A Option B16 (160 MHz bandwidth) and Option UNZ (fast switching).

### Noise Figure Measurement Application

| Description       | Specifications   |                   | Supplemental Information                                         |
|-------------------|------------------|-------------------|------------------------------------------------------------------|
| Noise figure      |                  |                   | Uncertainty calculator <sup>54</sup>                             |
| < 10 MHz          |                  |                   | See footnote <sup>55</sup>                                       |
| 10 MHz to 3.6 GHz |                  |                   | Internal and External preamplification recommended <sup>56</sup> |
|                   | Noise source ENR | Measurement range | Instrument Uncertainty <sup>57</sup>                             |
|                   | 4 to 6.5 dB      | 0 to 20 dB        | ± 0.02 dB                                                        |
|                   | 12 to 17 dB      | 0 to 30 dB        | ± 0.025 dB                                                       |
|                   | 20 to 22 dB      | 0 to 35 dB        | ± 0.03 dB                                                        |

54. The figures given in the table are for the uncertainty added by the X-Series Signal Analyzer instrument only. To compute the total uncertainty for your noise figure measurement, you need to take into account other factors including: DUT NF, Gain and Match, Instrument NF, Gain Uncertainty and Match; Noise source ENR uncertainty and Match. The computations can be performed with the uncertainty calculator included with the Noise Figure Measurement Personality. Go to Mode Setup then select Uncertainty Calculator.

55. Uncertainty performance of the instrument is nominally the same in this frequency range as in the higher frequency range. However, performance is not warranted in this range. There is a paucity of available noise sources in this range, and the analyzer has poorer noise figure, leading to higher uncertainties as computed by the uncertainty calculator.

56. The NF uncertainty calculator can be used to compute the uncertainty. For most DUTs of normal gain, the uncertainty will be quite high without preamplification.

57. "Instrument Uncertainty" is defined for noise figure analysis as uncertainty due to relative amplitude uncertainties encountered in the analyzer when making the measurements required for a noise figure computation. The relative amplitude uncertainty depends on, but is not identical to, the relative display scale fidelity, also known as incremental log fidelity. The uncertainty of the analyzer is multiplied within the computation by an amount that depends on the Y factor to give the total uncertainty of the noise figure or gain measurement. See App Note 57-2, literature number 5952-3706E for details on the use of this specification. Jitter (amplitude variations) will also affect the accuracy of results. The standard deviation of the measured result decreases by a factor of the square root of the Resolution Bandwidth used and by the square root of the number of averages. This application uses the 4 MHz Resolution Bandwidth as default because this is the widest bandwidth with uncompromised accuracy.

| Description                          | Specifications | Supplemental Information                               |
|--------------------------------------|----------------|--------------------------------------------------------|
| Gain                                 |                |                                                        |
| Instrument uncertainty <sup>58</sup> |                | DUT gain range = -20 to +40 dB. See note <sup>59</sup> |
| < 10 MHz                             |                |                                                        |
| 10 MHz to 3.6 GHz                    | ± 0.10 dB      |                                                        |
|                                      |                |                                                        |

58. "Instrument Uncertainty" is defined for gain measurements as uncertainty due to relative amplitude uncertainties encountered in the analyzer when making the measurements required for the gain computation. See App Note 57-2, literature number 5952-3706E for details on the use of this specification. Jitter (amplitude variations) will also affect the accuracy of results. The standard deviation of the measured result decreases by a factor of the square root of the Resolution Bandwidth used and by the square root of the number of averages. This application uses the 4 MHz Resolution Bandwidth as default since this is the widest bandwidth with uncompromised accuracy. Under difficult conditions (low Y factors), the instrument uncertainty for gain in high band can dominate the NF uncertainty as well as causing errors in the measurement of gain. These effects can be predicted with the uncertainty calculator.

59. Uncertainty performance of the instrument is nominally the same in this frequency range as in the higher frequency range. However, performance is not warranted in this range. There is a paucity of available noise sources in this range, and the analyzer has poorer noise figure, leading to higher uncertainties as computed by the uncertainty calculator.

| Description                                       | Specifications                                     | Supplemental Information                  |
|---------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| Noise figure uncertainty calculator <sup>60</sup> |                                                    |                                           |
| Instrument noise figure uncertainty               | See the noise figure table earlier in this chapter |                                           |
| Instrument gain uncertainty                       | See the gain table earlier in this chapter         |                                           |
| Instrument noise figure                           |                                                    | See graphs of "nominal instrument noise   |
|                                                   |                                                    | figure"; noise figure is DANL + 176.24 dB |
|                                                   |                                                    | (nominal) <sup>61</sup>                   |
| Instrument input match                            |                                                    | See graphs: nominal VSWR                  |

60. The Noise Figure Uncertainty Calculator requires the parameters shown in order to calculate the total uncertainty of a Noise Figure measurement. 61. Nominally, the noise figure of the spectrum analyzer is given by NF = D - (K - L + N + B) where D is the DANL (displayed average noise level)

61. Nominally, the noise figure of the spectrum analyzer is given by NF = D – (K – L + N + B) where D is the DANL (displayed average noise level) specification, K is kTB (-173.98 dBm in a 1 Hz bandwidth at 290 K) L is 2.51 dB (the effect of log averaging used in DANL verifications) N is 0.24 dB (the ratio of the noise bandwidth of the RBW filter with which DANL is specified to an ideal noise bandwidth) B is ten times the base-10 logarithm of the RBW (in hertz) in which the DANL is specified. B is 0 dB for the 1 Hz RBW. The actual NF will vary from the nominal due to frequency response errors.



# Standard Configuration - Options F08, F14, F18, F27

### Format specific measurement data

| 16QAM <sup>62</sup>                        |                      |                                |                         |                       |
|--------------------------------------------|----------------------|--------------------------------|-------------------------|-----------------------|
| EVM                                        | Fc                   |                                | Unequalized,<br>nominal | Equalized,<br>nominal |
| RRC Alpha = 0.2, 50 MSymbols/s             | 1.8 GHz              |                                | 0.39%                   | 0.21%                 |
|                                            | 5.95 GHz             |                                | 0.41%                   | 0.20%                 |
| RRC Alpha = 0.35, 50 MSymbols/s            | 5.95 GHz             |                                | 0.39%                   | 0.19%                 |
| CDMA2000 63                                |                      |                                |                         |                       |
|                                            | Parameters           |                                | Nominal                 |                       |
| Pilot EVM                                  | Fc = 0.9, 1.9 GHz    |                                | 0.37%                   |                       |
| GSM <sup>63</sup>                          |                      |                                |                         |                       |
|                                            | Parameters           |                                | Nominal                 |                       |
| Global phase error                         | Fc = 0.9, 1.8, 1.9 ( | GHz                            | 0.18 °                  |                       |
| ORFS dynamic range (noise corrections OFF) | 200 kHz offset       |                                | –36 dBc                 |                       |
|                                            | 250 kHz offset       |                                | –41.5 dBc               |                       |
|                                            | 400 kHz offset       |                                | –68 dBc                 |                       |
|                                            | 600 kHz offset       |                                | –75 dBc                 |                       |
|                                            | 800 kHz offset       |                                | –77.5 dBc               |                       |
|                                            | 1200 kHz offset      |                                | –81.5 dBc               |                       |
|                                            | 1800 kHz offset      |                                | –79.5 dBc               |                       |
| EDGE <sup>63</sup>                         |                      |                                |                         |                       |
|                                            | Parameters           |                                | Nominal                 |                       |
| Residual EVM                               | Fc = 0.9, 1.8, 1.9,  | 2.0, 2.1, 2.2 GHz              | 0.25%                   |                       |
| ORFS dynamic range (noise corrections OFF) | 200 kHz offset       |                                | –36.5 dBc               |                       |
|                                            | 250 kHz offset       |                                | –42 dBc                 |                       |
|                                            | 400 kHz offset       |                                | –67 dBc                 |                       |
|                                            | 600 kHz offset       |                                | –73.5 dBc               |                       |
|                                            | 800 kHz offset       |                                | –76.5 dBc               |                       |
|                                            | 1200 kHz offset      |                                | –81 dBc                 |                       |
|                                            | 1800 kHz offset      |                                | –78.5 dBc               |                       |
| W-CDMA <sup>63</sup>                       |                      |                                |                         |                       |
|                                            | Parameters           |                                | Nominal                 |                       |
| Residual EVM                               | Fc = 0.9, 1.8, 1.9,  | 2.0, 2.1 GHz                   | 0.50%                   |                       |
|                                            |                      | Noise corrections OFF, nominal | Noise corrections       | ON, nominal           |
| ACLR dynamic range                         | Adjacent             | –73 dB                         | –75 dB                  |                       |
| (channel bandwidth = 5 MHz, Fc = 2 GHz)    | Alternate            | –75 dB                         | –79 dB                  |                       |
| W-CDMA channel power accuracy              |                      |                                | ± 0.5 dB                |                       |

62. Input signal (total power) 0 dBm, range set to just above overload, conversion mode: Auto, Mixer level offset and IF level offset optimized for EVM performance.

63. Expected input level 0 dBm, input signal (total power) 0 dBm, Mixer level offset 0 dB, conversion mode: Auto, PeakToAverage set per signal peak to average.

## Standard Configuration - Options F08, F14, F18, F27

### Format specific measurement data (cont'd)

| 802.11g <sup>64</sup>                                                                                      | Parameters                                                                                                                                                                                                                                   |                                                                                                                   |                                              | Nomina                                       | ıl 1-channel                                 |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| EVM                                                                                                        | 2.4 GHz, 20 MHz BW                                                                                                                                                                                                                           |                                                                                                                   |                                              | -50.5 a                                      | B                                            |
| 802.11a <sup>64</sup>                                                                                      | Parameters                                                                                                                                                                                                                                   |                                                                                                                   |                                              | Nomina                                       | ıl 1-channel                                 |
| EVM                                                                                                        | 5.8 GHz, 20 MHz BW                                                                                                                                                                                                                           |                                                                                                                   |                                              | -50 dB                                       |                                              |
| 802.11n <sup>64, 65</sup>                                                                                  | Parameters<br>64-QAM                                                                                                                                                                                                                         | Nominal<br>1-channel                                                                                              | 2-channel                                    | 3-channel                                    | 4-channel                                    |
| Preamble only                                                                                              |                                                                                                                                                                                                                                              |                                                                                                                   |                                              |                                              |                                              |
| EVM                                                                                                        | 2.4 GHz, 40 MHz BW                                                                                                                                                                                                                           |                                                                                                                   | –48.4 dB                                     | -47 dB                                       | –47.9 dB                                     |
|                                                                                                            | 5.8 GHz, 40 MHz BW                                                                                                                                                                                                                           | –50.5 dB                                                                                                          | –49.1 dB                                     | -48 dB                                       | –48.7 dB                                     |
| Preamble, pilots, and data                                                                                 |                                                                                                                                                                                                                                              |                                                                                                                   |                                              |                                              |                                              |
| EVM                                                                                                        | 2.4 GHz, 40 MHz BW                                                                                                                                                                                                                           |                                                                                                                   | −51.4 dB                                     | –50.7 dB                                     | -50.4 dB                                     |
|                                                                                                            | 5.8 GHz, 40 MHz BW                                                                                                                                                                                                                           |                                                                                                                   | –52.2 dB                                     | -51.8 dB                                     | –51.2 dB                                     |
| 802.11ac <sup>64, 65</sup>                                                                                 | Parameters<br>256-QAM                                                                                                                                                                                                                        | Nominal<br>1-channel                                                                                              | 2-channel                                    | 3-channel                                    | 4-channel                                    |
| Dreemble only                                                                                              |                                                                                                                                                                                                                                              |                                                                                                                   |                                              |                                              |                                              |
| Freditible only                                                                                            |                                                                                                                                                                                                                                              |                                                                                                                   |                                              |                                              |                                              |
| EVM                                                                                                        | 5.8 GHz, 80 MHz BW                                                                                                                                                                                                                           | –48.5 dB                                                                                                          | –46.9 dB                                     | -45.5 dB                                     | -46.4 dB                                     |
| EVM                                                                                                        | 5.8 GHz, 80 MHz BW<br>5.8 GHz, 160 MHz BW                                                                                                                                                                                                    | –48.5 dB<br>–46 dB                                                                                                | –46.9 dB<br>–45.7 dB                         | -45.5 dB<br>-44.3 dB                         | -46.4 dB<br>-45.4 dB                         |
| EVM<br>Preamble, pilots, and data                                                                          | 5.8 GHz, 80 MHz BW<br>5.8 GHz, 160 MHz BW                                                                                                                                                                                                    | –48.5 dB<br>–46 dB                                                                                                | -46.9 dB<br>-45.7 dB                         | –45.5 dB<br>–44.3 dB                         | -46.4 dB<br>-45.4 dB                         |
| EVM<br>Preamble, pilots, and data<br>EVM                                                                   | 5.8 GHz, 80 MHz BW<br>5.8 GHz, 160 MHz BW<br>5.8 GHz, 80 MHz BW                                                                                                                                                                              | -48.5 dB<br>-46 dB<br>-51.5 dB                                                                                    | -46.9 dB<br>-45.7 dB<br>-50.9 dB             | -45.5 dB<br>-44.3 dB<br>-49.8 dB             | -46.4 dB<br>-45.4 dB<br>-48.7 dB             |
| EVM<br>Preamble, pilots, and data<br>EVM                                                                   | 5.8 GHz, 80 MHz BW<br>5.8 GHz, 160 MHz BW<br>5.8 GHz, 80 MHz BW<br>5.8 GHz, 80 MHz BW<br>5.8 GHz, 160 MHz BW                                                                                                                                 | -48.5 dB<br>-46 dB<br>-51.5 dB<br>-49.5 dB                                                                        | -46.9 dB<br>-45.7 dB<br>-50.9 dB<br>-49.4 dB | -45.5 dB<br>-44.3 dB<br>-49.8 dB<br>-46.9 dB | -46.4 dB<br>-45.4 dB<br>-48.7 dB<br>-47.1 dB |
| EVM<br>Preamble, pilots, and data<br>EVM<br>SEM                                                            | 5.8 GHz, 80 MHz BW<br>5.8 GHz, 160 MHz BW<br>5.8 GHz, 80 MHz BW<br>5.8 GHz, 80 MHz BW<br>5.8 GHz, 160 MHz BW<br>5.8 GHz, 80 MHz BW                                                                                                           | -48.5 dB<br>-46 dB<br>-51.5 dB<br>-49.5 dB<br>See Figure 10                                                       | -46.9 dB<br>-45.7 dB<br>-50.9 dB<br>-49.4 dB | -45.5 dB<br>-44.3 dB<br>-49.8 dB<br>-46.9 dB | -46.4 dB<br>-45.4 dB<br>-48.7 dB<br>-47.1 dB |
| EVM<br>Preamble, pilots, and data<br>EVM<br>SEM<br><b>802.11a/g</b> <sup>64</sup>                          | 5.8 GHz, 80 MHz BW<br>5.8 GHz, 160 MHz BW<br>5.8 GHz, 80 MHz BW<br>5.8 GHz, 80 MHz BW<br>5.8 GHz, 160 MHz BW<br>5.8 GHz, 80 MHz BW<br>Parameters                                                                                             | -48.5 dB<br>-46 dB<br>-51.5 dB<br>-49.5 dB<br>See Figure 10                                                       | -46.9 dB<br>-45.7 dB<br>-50.9 dB<br>-49.4 dB | -45.5 dB<br>-44.3 dB<br>-49.8 dB<br>-46.9 dB | -46.4 dB<br>-45.4 dB<br>-48.7 dB<br>-47.1 dB |
| Preamble, pilots, and data<br>EVM<br>EVM<br>SEM<br>802.11a/g <sup>64</sup><br>SEM                          | 5.8 GHz, 80 MHz BW<br>5.8 GHz, 160 MHz BW<br>5.8 GHz, 80 MHz BW<br>5.8 GHz, 80 MHz BW<br>5.8 GHz, 160 MHz BW<br>5.8 GHz, 80 MHz BW<br>Parameters<br>2.4 GHz, 20 MHz BW                                                                       | -48.5 dB<br>-46 dB<br>-51.5 dB<br>-49.5 dB<br>See Figure 10<br>See Figure 11                                      | -46.9 dB<br>-45.7 dB<br>-50.9 dB<br>-49.4 dB | -45.5 dB<br>-44.3 dB<br>-49.8 dB<br>-46.9 dB | -46.4 dB<br>-45.4 dB<br>-48.7 dB<br>-47.1 dB |
| EVM Preamble, pilots, and data EVM SEM 802.11a/g <sup>64</sup> SEM                                         | 5.8 GHz, 80 MHz BW         5.8 GHz, 160 MHz BW         5.8 GHz, 80 MHz BW         5.8 GHz, 80 MHz BW         5.8 GHz, 160 MHz BW         5.8 GHz, 80 MHz BW         5.8 GHz, 80 MHz BW         5.8 GHz, 20 MHz BW         5.5 GHz, 20 MHz BW | -48.5 dB<br>-46 dB<br>-51.5 dB<br>-49.5 dB<br>See Figure 10<br>See Figure 11<br>See Figure 12                     | -46.9 dB<br>-45.7 dB<br>-50.9 dB<br>-49.4 dB | -45.5 dB<br>-44.3 dB<br>-49.8 dB<br>-46.9 dB | -46.4 dB<br>-45.4 dB<br>-48.7 dB<br>-47.1 dB |
| EVM<br>Preamble, pilots, and data<br>EVM<br>SEM<br>802.11a/g <sup>64</sup><br>SEM<br>802.16e <sup>64</sup> | 5.8 GHz, 80 MHz BW<br>5.8 GHz, 160 MHz BW<br>5.8 GHz, 160 MHz BW<br>5.8 GHz, 80 MHz BW<br>5.8 GHz, 160 MHz BW<br>5.8 GHz, 80 MHz BW<br>Parameters<br>2.4 GHz, 20 MHz BW<br>5.5 GHz, 20 MHz BW<br>Parameters                                  | -48.5 dB<br>-46 dB<br>-51.5 dB<br>-49.5 dB<br>See Figure 10<br>See Figure 11<br>See Figure 12<br>Nominal 1-channe | -46.9 dB<br>-45.7 dB<br>-50.9 dB<br>-49.4 dB | -45.5 dB<br>-44.3 dB<br>-49.8 dB<br>-46.9 dB | -46.4 dB<br>-45.4 dB<br>-48.7 dB<br>-47.1 dB |

64. Expected input level 0 dBm, input signal (total power) 0 dBm, Mixer level offset 0 dB, conversion mode: Auto, PeakToAverage set per signal peak to average, demod symbol time adjustment -3.125%.

65. Minimum M9393A instrument driver version 1.1 required for multi-channel/MIMO operation.

## Standard Configuration - Options F08, F14, F18, F27

### Format specific measurement (cont'd)

| LTE FDD-single channel <sup>66</sup>                      |                        |                  | Nominal 1-cl        | nannel         |                              |         |                                      |
|-----------------------------------------------------------|------------------------|------------------|---------------------|----------------|------------------------------|---------|--------------------------------------|
| E-TM 3.1                                                  |                        |                  | 5 MHz               |                | 10 MHz                       | 20 MHz  |                                      |
| EVM                                                       | Fc < 3.6 G             | Hz               | –47.5 dB            |                | –48.5 dB                     | –48 dB  |                                      |
|                                                           | Fc ≥ 3.6 G             | Hz               | –49 dB              |                | –51.5 dB                     | –50.5 d | 8                                    |
|                                                           | Channel E<br>Fc = 2 GH | 3W = 5 MHz,<br>z | Noise correc<br>OFF | tions          | Noise corrections<br>ON      |         |                                      |
| ACLR                                                      | Adjacent               |                  | –68.5 dB            |                | –71 dB                       |         |                                      |
|                                                           | Alternate              |                  | –71 dB              |                | –77.5 dB                     |         |                                      |
| LTE-FDD MIMO 66, 67                                       |                        | Carrier frequer  | псу                 | 2-cha          | annel, nominal               |         | 4-channel, nominal                   |
| 10 MHz BW EVM, R9 downlin<br>64 QAM, open loop spacial mi | <,<br>ultiplexing      | 900 MHz<br>2 GHz |                     | -50.7<br>-49.3 | 7 dB (0.29%)<br>3 dB (0.34%) |         | –50.7 dB (0.29%)<br>–48.9 dB (0.36%) |
| LTE-TDD MIMO 66, 67                                       |                        | Carrier freque   | ncy                 | 2-cha          | nnel, nominal                |         | 4-channel, nominal                   |
| 10 MHz BW EVM, R9 downlin                                 | κ,                     | 900 MHz          |                     | -49.4          | dB (0.34%)                   |         | -49.4 dB (0.29%)                     |
| 64 QAM, open loop spacial mu                              | ltiplexing             | 2 GHz            |                     | -47.9          | dB (0.4%)                    |         | –47.8 dB (0.41%)                     |

66. Expected input level 0 dBm, input signal (total power) 0 dBm, Mixer level offset 0 dB, conversion mode: Auto, PeakToAverage set per signal peak to average, demod symbol time adjustment -3.125%.

67. Minimum M9393A instrument driver version 1.1 required for multi-channel/MIMO operation.



Figure 10. WLAN 802.11ac SEM at 5.8 GHz, 80 MHz bandwidth.

### Standard Configuration - Options F08, F14, F18, F27

### Format specific measurement (cont'd)



Figure 11. WLAN 802.11 a/g SEM at 2.4 GHz, 20 MHz bandwidth.



Figure 12. WLAN 802.11 a/g SEM at 5.5 GHz, 20 MHz bandwidth.

# Extended Frequency Configuration - Option FRX



#### Block diagram

Figure 13. Extended frequency M9393A PXIe vector signal analyzer (3.6 to 50 GHz) block diagram with five modules consisting of the M9308A synthesizer, M9365A downconverter, M9214A digitizer and the optional M9300A frequency reference and M9169E switch input programmable step attenuator.

# Extended Frequency Configuration - Option FRX

### Frequency

| Frequency range and resolution          |                                                                           |                   |                     |
|-----------------------------------------|---------------------------------------------------------------------------|-------------------|---------------------|
| Option FRX                              | 3.6 to 50 GHz                                                             |                   |                     |
| Tuning resolution                       | Same as standard configuration                                            |                   |                     |
| Analysis bandwidth                      | Same as standard configuration                                            |                   |                     |
| IF frequency                            | Same as standard configuration                                            |                   |                     |
| Band                                    | Harmonic mixing mode                                                      | LO multiple (N)   | Frequency           |
| Band 1                                  | 1                                                                         | 1                 | 3.6 to 8.4 GHz      |
| Band 2                                  | 1                                                                         | 2                 | 8.4 to 13.6 GHz     |
| Band 3                                  | 2                                                                         | 2                 | 13.6 to 17.1 GHz    |
| Band 4                                  | 2                                                                         | 4                 | 17.1 to 27 GHz      |
| Band 5                                  | 2                                                                         | 4                 | 27 to 34 GHz        |
| Band 6                                  | 4                                                                         | 8                 | 34 to 50 GHz        |
| Frequency switching speed <sup>68</sup> |                                                                           |                   |                     |
| List mode switching speed               | Band                                                                      | Standard, nominal | Option UNZ, nominal |
| Baseband frequency offset change        | Same as standard configuration                                            |                   |                     |
| Arbitrary frequency change within:      | Bands 1 - 4 Same as standard configuration                                |                   | guration            |
|                                         | Band 5                                                                    | 5 ms              | < 200 µs            |
|                                         | Band 6                                                                    | 5 ms              | < 200 µs            |
| Non-list mode switching speed           | Same as standard configuration                                            |                   |                     |
| Resolution bandwidth (RBW)              |                                                                           |                   |                     |
| Minimum RBW                             | Same as standard configuration                                            |                   |                     |
| Maximum span:RBW ratio                  | Same as standard configuration                                            |                   |                     |
| Maximum RBW                             |                                                                           |                   |                     |
| 3.6 to 31.8 GHz                         | Same as standard configuration                                            |                   |                     |
| > 31.8 GHz                              | 10 MHz                                                                    |                   |                     |
| Video bandwidth (VBW)                   | Same as standard configuration                                            |                   |                     |
| Frequency span                          |                                                                           |                   |                     |
| Range                                   | Single FFT: Same as standard configuration<br>Stepped: 800 Hz to 46.4 GHz |                   |                     |
| Resolution                              | Same as standard configuration                                            |                   |                     |
| Frequency reference                     | Same as standard configuration                                            |                   |                     |

68. Frequency changes may result in attenuator state changes when operating with M9169E module. Frequency switching speed does not include attenuator switching time.

# Extended Frequency Configuration - Option FRX

#### Amplitude

> 30 to 50 GHz

| Input level                                        | Without M9169E                       |                         | With M9169E                                                                |                |
|----------------------------------------------------|--------------------------------------|-------------------------|----------------------------------------------------------------------------|----------------|
| Max safe average total power                       | + 17 dBm                             |                         | Refer to the M9169E d                                                      | ata sheet      |
| Max DC voltage                                     | ± 10 Vdc                             |                         | _                                                                          |                |
| Max RF input (recommended)                         | – 14 dBm                             |                         |                                                                            |                |
| Expected input level setting                       | Without M9169E                       |                         | With M9169E                                                                |                |
| Range                                              | – 170 to – 14 dBm                    |                         | – 170 to + 30 dBm                                                          |                |
| Resolution                                         | Same as standard con                 | figuration              |                                                                            |                |
| Attenuator                                         | Not available for this configuration |                         | Mechanical attenuator available with M9169E.<br>Refer to M9169E data sheet |                |
| Absolute amplitude accuracy, nominal <sup>69</sup> | Without M9169E 70                    |                         | With M9169E 71                                                             |                |
| 3.6 to 15 GHz                                      | ± 0.15 dB                            |                         | ± 0.20 dB                                                                  |                |
| > 15 to 30 GHz                                     | ± 0.39 dB                            |                         | ± 0.38 dB                                                                  |                |
| > 30 to 50 GHz                                     | ± 1.58 dB                            |                         | ± 0.83 dB                                                                  |                |
| IF flatness, nominal <sup>72</sup>                 | Without M9169E 73                    |                         | With M9169E                                                                |                |
| Frequency                                          | 3.6 to 18 GHz                        | > 18 to 50 GHz          | 3.6 to 18 GHz                                                              | > 18 to 50 GHz |
| Across any 20 MHz in 40 MHz path                   | ± 0.08 dB                            | ± 0.18 dB               | ± 0.1 dB                                                                   | ± 0.21 dB      |
| Across any 20 MHz in 160 MHz path                  | ± 0.1 dB                             | ± 0.26 dB               | ± 0.12 dB                                                                  | ± 0.31 dB      |
| 40 MHz                                             | ± 0.12 dB                            | ± 0.29 dB               | ± 0.25 dB                                                                  | ± 0.36 dB      |
| 100 MHz                                            | ± 0.15 dB                            | ± 0.46 dB               | ± 0.33 dB                                                                  | ± 0.76 dB      |
| 160 MHz                                            | ± 0.23 dB                            | ± 0.77 dB               | ± 0.43 dB                                                                  | ± 1.05 dB      |
| IF phase linearity, nominal <sup>72</sup>          | Without M9169E 73                    |                         | With M9169E                                                                |                |
| Frequency                                          | 3.6 to 17 GHz                        | > 17 to 50 GHz          | 3.6 to 17 GHz                                                              | > 17 to 50 GHz |
| Across any 20 MHz in 40 MHz path                   | ± 1.57 °                             | ± 2.13 °                | ± 1.8 °                                                                    | ± 2.17 °       |
| Across any 20 MHz in 160 MHz path                  | ± 1.43 °                             | ± 2.51 °                | ± 1.39 °                                                                   | ± 2.35 °       |
| 40 MHz                                             | ± 1.58 °                             | ± 2.3 °                 | ± 1.8 °                                                                    | ± 2.62 °       |
| 100 MHz                                            | ± 1.88 °                             | ± 3.64 °                | ± 2.38 °                                                                   | ± 4.06 °       |
| 160 MHz                                            | ± 2.89 °                             | ± 3.8 °                 | ± 2.57 °                                                                   | ± 4.06 °       |
| IF bandwidth filter switching uncertainty          | Same as standard con                 | figuration with pre-amp | off                                                                        |                |
| Expected input level switching uncertainty, no     | minal <sup>69,70</sup>               |                         | With M9169E                                                                |                |
| 3.6 to 30 GHz                                      |                                      |                         | ± 0.15 dB                                                                  |                |

69. Measured using an attenuator with VSWR performance equal to or better than the 8490D-020 coaxial attenuator. Peak to average = 0 dB. Applies after comprehensive alignment. Frequency is exclusive on the start frequency and inclusive on the stop frequency.

± 0.3 dB

70. Referenced to expected input level setting of –14 dBm for configuration without M9169E.

71. Referenced to expected input level setting of -5 dBm for configuration with M9169E.

72. Applies after comprehensive alignment. Deviation from the mean error of the entire bandwidth. Expected input level = 0 dBm, Mixer level offset = 0. Applies for bandwidths where (center frequency ± bandwidth/2) does not exceed the frequency range.

73. Measured using an attenuator with VSWR performance equal to or better than the 8490D-020 coaxial attenuator.

# Extended Frequency Configuration - Option FRX

### Amplitude (cont'd)

|                           | Without M9169E                       | With M9169E                |
|---------------------------|--------------------------------------|----------------------------|
| Amplitude switching speed | -                                    | Refer to M9169E data sheet |
| Trace detectors           | Same as standard configuration       |                            |
| Preamplifier              | Not available for this configuration |                            |

#### Dynamic range

| Displayed average noise level (DANL),<br>nominal <sup>66</sup>      | Without M9169E       | With M9169E                     |
|---------------------------------------------------------------------|----------------------|---------------------------------|
| 3.6 to 13.6 GHz                                                     | –161 dBm/Hz          | –158 dBm/Hz                     |
| > 13.6 to 34 GHz                                                    | –158 dBm/Hz          | –153 dBm/Hz                     |
| > 34 to 45 GHz                                                      | –156 dBm/Hz          | –151 dBm/Hz                     |
| > 45 to 50 GHz                                                      | –153 dBm/Hz          | –147 dBm/Hz                     |
| Third order intermodulation distortion (TOI), nominal <sup>67</sup> | Without M9169E       | With M9169E                     |
| 3.6 to 13.6 GHz                                                     | 9.5 dBm / -53 dBc    | 11 dBm / -56 dBc                |
| > 13.6 to 34 GHz                                                    | 5.5 dBm / -45 dBc    | 8.5 dBm / -51 dBc               |
| > 34 to 50 GHz                                                      | –2 dBm / -30 dBc     | 2.5 dBm / −39 dBc               |
| Second harmonic distortion (SHI), nominal                           | Without M9169E       | With M9169E                     |
| 3.6 to 13.6 GHz                                                     | 33 dBm / -33 dBc     | Add loss from M9169E data sheet |
| 13.6 to 34 GHz                                                      | 25.5 dBm / -25.5 dBc | _                               |
| 34 to 50 GHz                                                        | 18 dBm / –18 dBc     | -                               |

74. Mixer level offset = 0, Conversion = auto, PeakToAverage = 0. Expected input level = -60 dBm

75. Tone separation = 100 kHz, Expected input level = -14 dBm, Mixer offset level = 0 dB, PeakToAverage = 6 dB, Conversion type Auto. Signal level of -17 dBm used to calculate distortion in dBc. TOI = third order intercept. The TOI is given by the input tone level (in dBm) minus (distortion/2) where distortion is the relative level of the distortion tones in dBc.

# Technical Specifications and Characteristics Extended Frequency Configuration - Option FRX

### Spectral purity

#### Phase noise



Figure 14. Nominal phase noise 1 to 49.9 GHz. Expected input level = -14 dBm, Mixer level offset = 0 dB, PeakToAverage = 5.

Spurious free dynamic range (SFDR)

Same as standard configuration

## Extended Frequency Configuration - Option FRX

#### Time and acquisition

| Maximum capture memory                        | Same as standard configuration |
|-----------------------------------------------|--------------------------------|
| Segments                                      | Same as standard configuration |
| Maximum sample rate                           | Same as standard configuration |
| List mode                                     | Same as standard configuration |
| Triggering                                    | Same as standard configuration |
| Timing <sup>76</sup>                          |                                |
| Channel-to-channel synchronization            | < ± 1 ns, nominal              |
| Repeatability across instrument state changes | < ± 50 ps, nominal             |

#### Measurement speed

| IQ data capture    | Same as standard configuration |
|--------------------|--------------------------------|
| Power measurements | Same as standard configuration |



Figure 15. FRX spectrum frequency plot

<sup>76.</sup> Configured with a M9018A PXIe chassis. Repeatability across power cycles and IVI sessions. Applies to 2 channels in configura-tions both with and without M9169E with chassis FPGA version 1.05 or greater required

<sup>77.</sup> Input signal (total power) 0 dBm, range set to just above overload, conversion mode: Auto, Mixer level offset and IF level offset optimized for EVM performance..

| 16 QAM <sup>78</sup><br>EVM          |          | Without M9169E          |                       | With M9169E             |                       |
|--------------------------------------|----------|-------------------------|-----------------------|-------------------------|-----------------------|
|                                      | Fc       | Unequalized.<br>nominal | Equalized,<br>nominal | Unequalized.<br>nominal | Equalized,<br>nominal |
| RRC Alpha = 0.2, 50 MSymbols/s       | 5.95 GHz | 0.43%                   | 0.22%                 | 0.49%                   | 0.22%                 |
| RRC Alpha = 0.35, 50 MSymbols/s      | 5.95 GHz | 0.37%                   | 0.21%                 | 0.43%                   | 0.20%                 |
| RRC Alpha = 0.2, 62.5 MSymbols/s     | 5.95 GHz | 0.57%                   | 0.22%                 | 0.69%                   | 0.22%                 |
| RRC Alpha = 0.35, 62.5 MSymbols/s    | 5.95 GHz | 0.54%                   | 0.21%                 | 0.60%                   | 0.20%                 |
|                                      | 15 GHz   | -                       | -                     | 0.47%                   | 0.37%                 |
|                                      | 24 GHz   | -                       | -                     | 1.54%                   | 0.99%                 |
|                                      | 31 GHz   | -                       | -                     | 1.32%                   | 0.55%                 |
|                                      | 40 GHz   | -                       | -                     | 1.21%                   | 0.77%                 |
| RRC Alpha = 0.35, 104.167 MSymbols/s | 15 GHz   | -                       | -                     | 0.50%                   | 0.40%                 |
|                                      | 24 GHz   | -                       | -                     | 1.87%                   | 1.21%                 |
|                                      | 31 GHz   | -                       | -                     | 1.76%                   | 0.55%                 |
|                                      | 40 GHz   | -                       | _                     | 1.32%                   | 0.77%                 |

### Extended Frequency Configuration - Option FRX

78. Input signal (total power) 0 dBm, range set to just above overload, conversion mode: Auto, Mixer level offset and IF level offset optimized for EVM performance.

### Environmental and Physical Specifications

| Temperature              | Operating      |               | Individual module tem                                                                                                                                    | p 15 to 75 °C as reported by the module                                                                                          |
|--------------------------|----------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                          |                |               | and environment temp                                                                                                                                     | of 0 to 55 °C                                                                                                                    |
|                          | Non-operating  | g (storage)   | Environment temp of -                                                                                                                                    | -40 to +70 °C                                                                                                                    |
| Humidity <sup>79</sup>   |                |               | Type tested at 95%, +4                                                                                                                                   | 40 °C (non-condensing)                                                                                                           |
| Shock/vibration 79       | Operating rand | dom vibration | Type tested at 5 to 50                                                                                                                                   | 0 Hz, 0.21 g rms                                                                                                                 |
|                          | Survival rando | m vibration   | Type tested at 5 to 50                                                                                                                                   | 0 Hz, 2.09 g rms                                                                                                                 |
|                          | Functional sho | ick           | Type tested at half-sin                                                                                                                                  | e, 30 g, 11 ms                                                                                                                   |
|                          | Bench handlin  | g             | Type tested per MIL-P                                                                                                                                    | RF-28800F                                                                                                                        |
| Altitude                 |                |               | Up to 15,000 feet (4,5                                                                                                                                   | 72 meters) <sup>80</sup>                                                                                                         |
| Connectors               | RF In          |               | APC 3.5 mm (f)                                                                                                                                           |                                                                                                                                  |
|                          | Aux 2 In       |               | 2.4 mm (f)                                                                                                                                               |                                                                                                                                  |
| EMC                      |                |               | Complies with Europe<br>– IEC/EN 61326-2-<br>– CISPR Pub 11 Gro<br>– AS/NZS CISPR 1<br>– ICES/NMB-001<br>This ISM device compl<br>Cet appareil ISM est c | an EMC Directive 2004/108/EC<br>1<br>pup 1, class A<br>1<br>ies with Canadian ICES-001.<br>onforme a la norme NMB-001 du Canada. |
| Warm-up time             |                |               | 30 minutes                                                                                                                                               |                                                                                                                                  |
| Size                     | M9300A         |               | 1 PXIe slot                                                                                                                                              |                                                                                                                                  |
|                          | M9308A         |               | 1 PXIe slot                                                                                                                                              |                                                                                                                                  |
|                          | M9365A         |               | 2 PXIe slots                                                                                                                                             |                                                                                                                                  |
|                          | M9214A         |               | 1 PXIe slot                                                                                                                                              |                                                                                                                                  |
| Dimensions               | Module         | Length        | Width                                                                                                                                                    | Height                                                                                                                           |
|                          | M9300A         | 210 mm        | 22 mm                                                                                                                                                    | 130 mm                                                                                                                           |
|                          | M9308A         | 210 mm        | 22 mm                                                                                                                                                    | 130 mm                                                                                                                           |
|                          | M9365A         | 210 mm        | 44 mm                                                                                                                                                    | 130 mm                                                                                                                           |
|                          | M9214A         | 210 mm        | 22 mm                                                                                                                                                    | 130 mm                                                                                                                           |
| Weight                   | M9300A         |               | 0.55 kg (1.21 lbs)                                                                                                                                       |                                                                                                                                  |
|                          | M9308A         |               | 0.59 kg (1.31 lbs)                                                                                                                                       |                                                                                                                                  |
|                          | M9365A         |               | 1.05 kg (2.31 lbs)                                                                                                                                       |                                                                                                                                  |
|                          | M9214A         |               | 0.36 kg (0.79 lbs)                                                                                                                                       |                                                                                                                                  |
| Power drawn from chassis | M9300A         |               | ≤ 18 W                                                                                                                                                   |                                                                                                                                  |
|                          | M9308A         |               | ≤ 37 W                                                                                                                                                   |                                                                                                                                  |
|                          | M9365A         |               | ≤ 50 W                                                                                                                                                   |                                                                                                                                  |
|                          | M9214A         |               | ≤ 35 W                                                                                                                                                   |                                                                                                                                  |

79. Samples of this product have been type tested in accordance with the Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation and end-use - those stresses include but are not limited to temperature, humidity, shock, vibration, altitude and power-line conditions. Test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3.

80. At 15,000 feet, the maximum environmental temperature is de-rated to 52 °C.

# Configuration and Ordering Information

### Ordering information

| Model                | Description                                                                                                                                                                                                                                                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M9393A               | PXIe performance vector signal analyzer:<br>9 kHz to 8.4, 14, 18, or 27 GHz<br>Includes:<br>M9308A PXIe synthesizer<br>M9365A PXIe downconverter<br>M9214A PXIe IF digitizer<br>One day startup assistance<br>Module interconnect cables<br>Software, example programs and product<br>information on CD (optional)<br>Return to warranty – 3 years |
| Standard base config | juration                                                                                                                                                                                                                                                                                                                                           |
|                      |                                                                                                                                                                                                                                                                                                                                                    |

| M9393A-F08     | Frequency range: 9 kHz to 8.4 GHz         |
|----------------|-------------------------------------------|
| M9393A-B04     | Analysis bandwidth, 40 MHz                |
| M9393A-M01     | Memory, 128 MSa                           |
| M9393A-300     | Adds M9300A PXIe frequency reference:     |
| Required for   | 10 and 100 MHz (M9300A module can support |
| warranted      | multiple M9393A modular instruments)      |
| specifications |                                           |

#### Configurable options

For a complete list of the M9393A PXI Performance VSA product options, please consult the M9393A configuration guide, literature number **5991-4580EN**.

| Frequency             |                                                |                                               |
|-----------------------|------------------------------------------------|-----------------------------------------------|
|                       |                                                |                                               |
| M9393A-F14            | 9 KHZ LO 14 GHZ                                |                                               |
| M9393A-F18            | 9 KHZ to 18 GHZ                                |                                               |
| M9393A-F27            | 9 kHz to 27 GHz                                |                                               |
| M9393A-FRX            | 3.6 to 50 GHz                                  | Requires Option F27                           |
| Additional capability |                                                |                                               |
| M9393A-UNZ            | Fast tuning                                    |                                               |
| M9393A-WB1            | Wideband IF output                             |                                               |
| Analysis bandwidth    |                                                |                                               |
| M9393A-B10            | 100 MHz                                        |                                               |
| M9393A-B16            | 160 MHz                                        |                                               |
| Memory                |                                                |                                               |
| M9393A-M05            | 512 MSa                                        |                                               |
| M9393A-M10            | 1024 MSa                                       |                                               |
| Pre-amplifier         |                                                |                                               |
| M9393A-P08            | 8.4 GHz preamplifier                           |                                               |
| M9393A-P14            | 14 GHz preamplifier                            |                                               |
| M9393A-P18            | 18 GHz preamplifier                            |                                               |
| M9393A-P27            | 27 GHz preamplifier                            |                                               |
| Other                 |                                                |                                               |
| M9393A-UK6            | Commercial calibration<br>data for M9393A (M93 | certificate with test<br>08A, M9365A, M9214A) |
| M9300A-UK6            | Commercial calibration<br>data for M9300A (mod | certificate with test<br>ule only)            |
| Related products in I | recommended configura                          | tion                                          |
| M9037A                | PXIe embedded contro                           | ller                                          |
| M9018A                | 18-slot PXIe chassis                           |                                               |
| M9169E                | Programmable step att<br>recommended for Optic | enuator<br>on FRX                             |
| M9203A                | PXIe wideband IF digiti                        | zer for Option WB1                            |

# Configuration and Ordering Information

### Software information

| Supported operating systems                                                                                                                                    | Microsoft Windows 7<br>(32/64-bit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard compliant drivers                                                                                                                                     | IVI-COM, IVI-C, MATLAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Supported application<br>development<br>environments (ADE)                                                                                                     | VisualStudio (VB.NET, C#, C/C++), VEE,<br>LabVIEW, LabWindows/CVI, MATLAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IO libraries (version 16.3 or newer)                                                                                                                           | Includes: VISA libraries,<br>Connection Expert, IO monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Command Expert                                                                                                                                                 | Instrument control for SCPI or<br>IVI-COM drivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 89600 VSA Software<br>(recommended minimum<br>version 20)                                                                                                      | 89601B-200 89600 VSA software, basic<br>and hardware connectivity<br>89601B-SSA Spectrum analysis<br>89601B-AYA Digital demodulation<br>89601B-BHF Custom OFDM<br>89601B-B7T cdma2000®/1xEV-DO<br>89601B-B7U W-CDMA/HSPA+<br>89601B-B7U W-CDMA/HSPA+<br>89601B-B7R WLAN 802.11a/b/g/j/p<br>89601B-BHJ WLAN 802.11a/ MIMO<br>89601B-BHJ WLAN 802.11a/ MIMO<br>89601B-BHJ UTE FDD<br>89601B-BHD LTE FDD<br>89601B-BHG LTE FDD - Advanced<br>89601B-BHE LTE TDD - Advanced<br>89601B-BHH LTE TDD - Advanced<br>89601B-BHK LTE TDD - Advanced<br>89601B-BHK Custom IQ<br>89601B-BHK Custom IQ<br>89601B-BHL Channel quality<br>89601B-BHP FMCW radar<br>89601B-BHQ Pulse |
| X-Series Measurement<br>Applications for<br>Modular Instruments<br>transportable<br>perpetual license (only<br>available for M9393A<br>standard configuration) | M9063A Analog<br>M9064A VXA Vector Signal Analysis<br>M9068A Phase noise<br>M9071A GSM/EDGE/Evo<br>M9072A cdma2000/cdmaOne<br>M9073A W-CDMA/HSPA+<br>M9076A 1xEV-DO<br>M9077A WLAN 802.11a/b/g/n/ac<br>M9079A TD-SCDMA/HSDPA<br>M9080B LTE/LTE-A FDD<br>M9081A <i>Bluetooth</i> ®<br>M9082B LTE/LTE-A TDD                                                                                                                                                                                                                                                                                                                                                            |

#### Accessories

| Model  | Description                            |
|--------|----------------------------------------|
| Y1212A | Slot blocker kit: 5 modules            |
| Y1213A | PXI EMC filler panel kit: 5 slots      |
| Y1214A | Air inlet kit: M9018A 18-slot chassis  |
| Y1215A | Rack mount kit: M9018A 18-slot chassis |

#### Related products

| Model  | Description                                       |
|--------|---------------------------------------------------|
| M9381A | PXIe vector signal generator                      |
| M9380A | PXIe CW source                                    |
| M9300A | PXIe frequency reference                          |
| M9021A | PCIe® cable interface                             |
| M9045B | PCIe express card adaptor for laptop connectivity |
| Y1200B | PCIe cable for laptop connectivity                |
| M9048A | PCIe desktop adaptor for desktop connectivity     |
| Y1202A | PCIe cable for desktop connectivity               |

#### Advantage services: Calibration and warranty

Advantage Services is committed to your success

throughout your equipment's lifetime

| R-51B-001-5Z | Return to warranty – 5 years      |
|--------------|-----------------------------------|
| R-51B-001-3X | Express warranty – 3 years        |
| R-51B-001-5X | Express warranty – 5 years        |
| N7800A       | Calibration & adjustment software |

#### По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93